SW
Shun-Long Weng
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2,954
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

Chih‐Hung Chou et al.Nov 20, 2015
MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
0
Citation1,768
0
Save
0

An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs

Tzu‐Hao Chang et al.Jan 1, 2013
Abstract Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods and results An integrated web-based system, RegRNA 2.0, has been developed for comprehensively identifying the functional RNA motifs and sites in an input RNA sequence. Numerous data sources and analytical approaches are integrated, and several types of functional RNA motifs and sites can be identified by RegRNA 2.0: (i) splicing donor/acceptor sites; (ii) splicing regulatory motifs; (iii) polyadenylation sites; (iv) ribosome binding sites; (v) rho-independent terminator; (vi) motifs in mRNA 5'-untranslated region (5'UTR) and 3'UTR; (vii) AU-rich elements; (viii) C-to-U editing sites; (ix) riboswitches; (x) RNA cis-regulatory elements; (xi) transcriptional regulatory motifs; (xii) user-defined motifs; (xiii) similar functional RNA sequences; (xiv) microRNA target sites; (xv) non-coding RNA hybridization sites; (xvi) long stems; (xvii) open reading frames; (xviii) related information of an RNA sequence. User can submit an RNA sequence and obtain the predictive results through RegRNA 2.0 web page. Conclusions RegRNA 2.0 is an easy to use web server for identifying regulatory RNA motifs and functional sites. Through its integrated user-friendly interface, user is capable of using various analytical approaches and observing results with graphical visualization conveniently. RegRNA 2.0 is now available at http://regrna2.mbc.nctu.edu.tw .
0
Citation331
0
Save
0

CircNet: a database of circular RNAs derived from transcriptome sequencing data

Yu‐Chen Liu et al.Oct 7, 2015
Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes.
0
Citation320
0
Save
0

Bacterial Communities in Semen from Men of Infertile Couples: Metagenomic Sequencing Reveals Relationships of Seminal Microbiota to Semen Quality

Shun-Long Weng et al.Oct 23, 2014
Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.
0
Citation246
0
Save