AW
Andy Wu
Author with expertise in Macrophage Activation and Polarization
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
685
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

Kylie Alexander et al.Feb 8, 2011
Bone-lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80(+) Mac-2(-/low) TRACP(-) osteomacs and F4/80(+) Mac-2(hi) TRACP(-) inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1(+) (CT1(+)) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro-computed tomography. Conversely, administration of the macrophage growth factor colony-stimulating factor 1 (CSF-1) increased the number of osteomacs/macrophages at the injury site significantly with a concurrent increase in new CT1(+) matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing and as targets for primary anabolic bone therapies.
5

Fragmentation of macrophages during isolation confounds analysis of single cell preparations from mouse hematopoietic tissues

Susan Millard et al.Apr 28, 2021
Summary Mouse hematopoietic tissues contain abundant and heterogeneous populations of tissue-resident macrophages attributed trophic functions in control of immunity, hematopoiesis and bone homeostasis. A systematic strategy to characterise macrophage subsets in mouse bone marrow (BM), spleen and lymph node, unexpectedly revealed macrophage surface marker staining typically emanated from membrane-bound subcellular remnants associated with unrelated cell types. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters and mRNA were all detected in non-macrophage cell populations including isolated stem and progenitor cells. The profile of macrophage remnant association reflects adhesive interactions between macrophages and other cell types in vivo. Applying this knowledge, reduced macrophage remnant attachment to BM granulocytes in Siglec1 deficient mice was associated with compromised emergency granulocytosis, revealing a function for Siglec1 -dependent granulocyte-macrophage interactions. Analysis of published RNA-seq data for purified macrophage and non-macrophage populations indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single cell analysis of disaggregated tissues.
5
Paper
Citation3
0
Save
0

Stable colony stimulating factor 1 fusion protein treatment increases HSC pool and enhances their mobilisation in mice

Simranpreet Kaur et al.Sep 13, 2020
Abstract Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with colony stimulating factor-1 (CSF1) to modify the BM niche and expand the potential HSC pool for autologous transplantation. We administrated CSF1 Fc fusion protein (CSF1-Fc) to naive C57Bl/6 mice and assessed the impacts on HSC number and function and overall haematopoiesis. Outcomes were assessed by in situ imaging and ex vivo flow cytometry with functional validation by colony formation and competitive transplantation assay. CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of haematopoiesis was accompanied by an increase in the total available HSPC pool. In the spleen, increased HSC was associated with expression of the BM niche marker CD169 in red pulp macrophages. Pre-treatment with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of granulocyte colony stimulating factor (G-CSF) treatment. These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve autologous or heterologous HSC transplantation outcomes. Key points 1) Recovery from Fc-modified colony stimulating factor-1 (CSF1-Fc) treatment was accompanied by an increase in total haematopoietic stem cells. 2) Pre-conditioning with CSF1-Fc increased the reconstitution potential of blood after haematopoietic stem cell mobilisation.
1

Osteomacs support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model

Lena Batoon et al.Feb 6, 2021
Abstract Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. While mouse ovariectomy models have been repeatedly used, variation in strain, experimental design and assessment modalities, have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an ovariectomy model in adult C3H/HeJ mice and demonstrated that it presents with human post-menopausal osteoporosis features, including reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterised by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-ovariectomy on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and TRAP staining revealed osteomacs frequently located near TRAP + osteoclasts and containing TRAP + intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone by-products. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption by-products. Finally, using Siglec1 knockout mice, we demonstrated that loss of the macrophage-restricted molecule Siglec-1/CD169 is sufficient to cause age-associated low bone mass, emphasizing the macrophages, independent of osteoclasts, contribute to optimal skeletal health. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis.