XX
Xueqin Xie
Author with expertise in Molecular Mechanisms of Insect Resistance to Xenobiotics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,493
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao et al.Jan 6, 2011
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.
0
Citation604
0
Save
4

O-GlcNAc regulates MTA1 transcriptional activity during breast cancer cells genotoxic adaptation

Xiaodong Xie et al.Feb 8, 2021
Abstract Chromatin modifier metastasis-associated protein 1 (MTA1), closely correlated with the development and progression in breast cancer, has a vital role in multiple cellular processes, including gene expression and cell homeostasis. Although MTA1 is a stress-responsive gene, its role in genotoxic adaptation remains unexplored. The current study sought to investigate the role of MTA1 and its O-GlcNAc modification in breast cancer cells genotoxic adaptation by using quantitative proteomics, ChIP-seq, transcriptome analysis, loss-and gain-of-functions experiments. We demonstrate that O-GlcNAc modification promotes MTA1 to interact with chromatin and regulates target gene expression, contributing to breast cancer cell genotoxic adaptation. MTA1 is modified with O-GlcNAc residues at serine 237/241/246 in adriamycin adaptive breast cancer cells and that modification improves the genome-wide interactions of MTA1 with gene promotor regions by enhancing its association with nucleosome remodeling and histone deacetylation (NuRD) complex. Further, O-GlcNAc-modulated MTA1 chromatin-binding influences the specific transcriptional regulation of genes involved in the adaptation of breast cancer cells to genotoxic stress. Our findings reveal a previously unrecognized role of O-GlcNAc MTA1 in transcriptional regulation and suggest that O-GlcNAc modification is a promising therapeutic target to overcome chemoresistance in breast cancers.
4
Citation1
0
Save