CP
Chrysanthi Papoutsi
Author with expertise in Telemedicine in Global Healthcare
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,030
h-index:
26
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies

Trisha Greenhalgh et al.Nov 1, 2017
Background: Many promising technological innovations in health and social care are characterized by nonadoption or abandonment by individuals or by failed attempts to scale up locally, spread distantly, or sustain the innovation long term at the organization or system level. Objective: Our objective was to produce an evidence-based, theory-informed, and pragmatic framework to help predict and evaluate the success of a technology-supported health or social care program. Methods: The study had 2 parallel components: (1) secondary research (hermeneutic systematic review) to identify key domains, and (2) empirical case studies of technology implementation to explore, test, and refine these domains. We studied 6 technology-supported programs—video outpatient consultations, global positioning system tracking for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organizing software, and integrated case management via data sharing—using longitudinal ethnography and action research for up to 3 years across more than 20 organizations. Data were collected at micro level (individual technology users), meso level (organizational processes and systems), and macro level (national policy and wider context). Analysis and synthesis was aided by sociotechnically informed theories of individual, organizational, and system change. The draft framework was shared with colleagues who were introducing or evaluating other technology-supported health or care programs and refined in response to feedback. Results: The literature review identified 28 previous technology implementation frameworks, of which 14 had taken a dynamic systems approach (including 2 integrative reviews of previous work). Our empirical dataset consisted of over 400 hours of ethnographic observation, 165 semistructured interviews, and 200 documents. The final nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework included questions in 7 domains: the condition or illness, the technology, the value proposition, the adopter system (comprising professional staff, patient, and lay caregivers), the organization(s), the wider (institutional and societal) context, and the interaction and mutual adaptation between all these domains over time. Our empirical case studies raised a variety of challenges across all 7 domains, each classified as simple (straightforward, predictable, few components), complicated (multiple interacting components or issues), or complex (dynamic, unpredictable, not easily disaggregated into constituent components). Programs characterized by complicatedness proved difficult but not impossible to implement. Those characterized by complexity in multiple NASSS domains rarely, if ever, became mainstreamed. The framework showed promise when applied (both prospectively and retrospectively) to other programs. Conclusions: Subject to further empirical testing, NASSS could be applied across a range of technological innovations in health and social care. It has several potential uses: (1) to inform the design of a new technology; (2) to identify technological solutions that (perhaps despite policy or industry enthusiasm) have a limited chance of achieving large-scale, sustained adoption; (3) to plan the implementation, scale-up, or rollout of a technology program; and (4) to explain and learn from program failures.
0

Analysing the role of complexity in explaining the fortunes of technology programmes: empirical application of the NASSS framework

Trisha Greenhalgh et al.May 10, 2018
Failures and partial successes are common in technology-supported innovation programmes in health and social care. Complexity theory can help explain why. Phenomena may be simple (straightforward, predictable, few components), complicated (multiple interacting components or issues) or complex (dynamic, unpredictable, not easily disaggregated into constituent components). The recently published NASSS framework applies this taxonomy to explain Non-adoption or Abandonment of technology by individuals and difficulties achieving Scale-up, Spread and Sustainability. This paper reports the first empirical application of the NASSS framework. Six technology-supported programmes were studied using ethnography and action research for up to 3 years across 20 health and care organisations and 10 national-level bodies. They comprised video outpatient consultations, GPS tracking technology for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organising software and integrated case management via data warehousing. Data were collected at three levels: micro (individual technology users), meso (organisational processes and systems) and macro (national policy and wider context). Data analysis and synthesis were guided by socio-technical theories and organised around the seven NASSS domains: (1) the condition or illness, (2) the technology, (3) the value proposition, (4) the adopter system (professional staff, patients and lay carers), (5) the organisation(s), (6) the wider (institutional and societal) system and (7) interaction and mutual adaptation among all these domains over time. The study generated more than 400 h of ethnographic observation, 165 semi-structured interviews and 200 documents. The six case studies raised multiple challenges across all seven domains. Complexity was a common feature of all programmes. In particular, individuals' health and care needs were often complex and hence unpredictable and 'off algorithm'. Programmes in which multiple domains were complicated proved difficult, slow and expensive to implement. Those in which multiple domains were complex did not become mainstreamed (or, if mainstreamed, did not deliver key intended outputs). The NASSS framework helped explain the successes, failures and changing fortunes of this diverse sample of technology-supported programmes. Since failure is often linked to complexity across multiple NASSS domains, further research should systematically address ways to reduce complexity and/or manage programme implementation to take account of it.
0

Understanding the integration of artificial intelligence in healthcare organisations and systems through the NASSS framework: a qualitative study in a leading Canadian academic centre

Hassane Alami et al.Jun 3, 2024
Abstract Background Artificial intelligence (AI) technologies are expected to “revolutionise” healthcare. However, despite their promises, their integration within healthcare organisations and systems remains limited. The objective of this study is to explore and understand the systemic challenges and implications of their integration in a leading Canadian academic hospital. Methods Semi-structured interviews were conducted with 29 stakeholders concerned by the integration of a large set of AI technologies within the organisation (e.g., managers, clinicians, researchers, patients, technology providers). Data were collected and analysed using the Non-Adoption, Abandonment, Scale-up, Spread, Sustainability (NASSS) framework. Results Among enabling factors and conditions, our findings highlight: a supportive organisational culture and leadership leading to a coherent organisational innovation narrative; mutual trust and transparent communication between senior management and frontline teams; the presence of champions, translators, and boundary spanners for AI able to build bridges and trust; and the capacity to attract technical and clinical talents and expertise. Constraints and barriers include: contrasting definitions of the value of AI technologies and ways to measure such value; lack of real-life and context-based evidence; varying patients’ digital and health literacy capacities; misalignments between organisational dynamics, clinical and administrative processes, infrastructures, and AI technologies; lack of funding mechanisms covering the implementation, adaptation, and expertise required; challenges arising from practice change, new expertise development, and professional identities; lack of official professional, reimbursement, and insurance guidelines; lack of pre- and post-market approval legal and governance frameworks; diversity of the business and financing models for AI technologies; and misalignments between investors’ priorities and the needs and expectations of healthcare organisations and systems. Conclusion Thanks to the multidimensional NASSS framework, this study provides original insights and a detailed learning base for analysing AI technologies in healthcare from a thorough socio-technical perspective. Our findings highlight the importance of considering the complexity characterising healthcare organisations and systems in current efforts to introduce AI technologies within clinical routines. This study adds to the existing literature and can inform decision-making towards a judicious, responsible, and sustainable integration of these technologies in healthcare organisations and systems.
0
Paper
Citation1
0
Save