SP
Sarthak Pati
Author with expertise in Deep Learning in Medical Image Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
3,247
h-index:
21
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data

Micah Sheller et al.Jul 28, 2020
Abstract Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
0
Citation675
0
Save
0

Robust Image Population Based Stain Color Normalization: How Many Reference Slides Are Enough?

jose agraz et al.Jan 1, 2022
Histopathologic evaluation of Hematoxylin & Eosin (H&E) stained slides is essential for disease diagnosis, revealing tissue morphology, structure, and cellular composition. Variations in staining protocols and equipment result in images with color nonconformity. Although pathologists compensate for color variations, these disparities introduce inaccuracies in computational whole slide image (WSI) analysis, accentuating data domain shift and degrading generalization. Current state-of-the-art normalization methods employ a single WSI as reference, but selecting a single WSI representative of a complete WSI-cohort is infeasible, inadvertently introducing normalization bias. We seek the optimal number of slides to construct a more representative reference based on composite/aggregate of multiple H&E density histograms and stain-vectors, obtained from a randomly selected WSI population (WSI-Cohort-Subset). We utilized 1,864 IvyGAP WSIs as a WSI-cohort, and built 200 WSI-Cohort-Subsets varying in size (from 1 to 200 WSI-pairs) using randomly selected WSIs. The WSI-pairs' mean Wasserstein Distances and WSI-Cohort-Subsets' standard deviations were calculated. The Pareto Principle defined the optimal WSI-Cohort-Subset size. The WSI-cohort underwent structure-preserving color normalization using the optimal WSI-Cohort-Subset histogram and stain-vector aggregates. Numerous normalization permutations support WSI-Cohort-Subset aggregates as representative of a WSI-cohort through WSI-cohort CIELAB color space swift convergence, as a result of the law of large numbers and shown as a power law distribution. We show normalization at the optimal (Pareto Principle) WSI-Cohort-Subset size and corresponding CIELAB convergence: a) Quantitatively, using 500 WSI-cohorts; b) Quantitatively, using 8,100 WSI-regions; c) Qualitatively, using 30 cellular tumor normalization permutations. Aggregate-based stain normalization may contribute in increasing computational pathology robustness, reproducibility, and integrity.
0

Advancing volumetric breast density segmentation: a deep learning approach with digital breast tomosynthesis

Nehal Doiphode et al.May 29, 2024
Recognizing breast density as a critical risk factor for breast cancer, traditionally assessed through subjective radiological evaluation within the BI-RADS framework, this research seeks to mitigate inter-observer variability through automated, quantitative analysis. The transition to DBT offers a quasi-3D perspective potentially enhancing the accuracy of BD assessments yet faces limitations with current FDA-cleared methods for volumetric breast density (VBD) estimation. Addressing these challenges, our work introduces a fully automated computational tool leveraging deep learning to accurately assess VBD from 3D DBT images without reliance on raw 2D data. Employing retrospective data compliant with privacy regulations, this study utilized DBT screening examinations from the Hospital of the University of Pennsylvania. The development of a three-class segmentation model, based on the U-Net architecture, was undertaken to differentiate between non-breast/background, fatty breast tissue, and dense breast tissue in DBT images. A novel two-stage training method was devised to enhance model performance, particularly in avoiding mis-segmentation issues common in high-resolution medio-lateral oblique images. This approach first utilized resized images for global shape information recognition, followed by refined segmentation using a 3D U-Net on filtered input, emphasizing accurate dense tissue identification. Our model demonstrated exemplary performance, with the Dice score—a critical metric for evaluating segmentation accuracy—revealing substantial agreement between the model's predictions and actual data. Validation of the model's effectiveness in breast cancer risk estimation was conducted through a case-control study, demonstrating a statistically significant association between DL-estimated VBD and cancer diagnosis. Additional factors, including BMI and age at screening, were also found to be significantly associated with cancer status, underscoring the multifactorial nature of breast cancer risk. The model's predictive capability was further evidenced by an AUC of 0.63, indicating good performance. The study's implications are profound, offering a clinically significant tool for personalized breast cancer risk prediction and potentially enhancing screening strategies across diverse populations.
0

TMIC-60. BRATS-PATH: ASSESSING HETEROGENEOUS HISTOPATHOLOGIC REGIONS IN GLIOBLASTOMA

Siddhesh Thakur et al.Nov 1, 2024
Abstract Glioblastoma, the most common malignant primary adult brain tumor, poses significant diagnostic and treatment challenges due to its heterogeneous molecular and micro-environmental profiles. To this end, we organize the BraTS-Path challenge to provide a public benchmarking environment and a comprehensive dataset to develop and validate AI models for identifying distinct histopathologic glioblastoma sub-regions in H&E-stained digitized tissue sections. We identified 188 multi-institutional diagnostic slides of glioblastoma (IDH-wt, Gr.4) cases, from the TCGA-GBM and TCGA-LGG data collections, following their reclassification according to the 2021 WHO classification criteria. Sub-regions were selected according to distinctive morphology of histopathologic features and included aggressive tumor biology and areas consistent with potential treatment effect. Selected sub-region annotations included cellular tumor, geographic necrosis, cortical infiltration, pseudopalisading necrosis, microvascular proliferation, white matter penetration, regions dense with macrophages, leptomeningeal infiltration, and presence of lymphocytes. We obtained 107,340 patches of size 512x512 from the 9 sub-regions. A global network of board-certified expert neuropathologists defined and followed a systematic annotation protocol based on clinical definitions and only delineated sub-regions with high confidence, thus ensuring high-quality standardized data. Each tissue section was assigned to an annotator-approver pair, with the annotator delineating sub-regions and the approver ensuring the consistency of the annotations. By crowdsourcing annotations, the BraTS-Path challenge harnesses the collective expertise of clinical neuropathologists and fosters a collaborative environment to advance the neuro-oncology field. The anticipated developed algorithms are expected to integrate state-of-the-art computational methods, achieving high accuracy in identifying diverse histopathologic features and advancing clinical decision-making processes. The BraTS-Path challenge aims to bridge the gap between research and clinical practice by promoting the development of AI-driven tools for precise tumor characterization. This collaborative effort can significantly enhance our understanding of glioblastoma, improve diagnostic accuracy, and inform treatment strategies, thereby contributing to better patient outcomes.
0

Volumetric Breast Density Estimation From Three-Dimensional Reconstructed Digital Breast Tomosynthesis Images Using Deep Learning

Vinayak Ahluwalia et al.Dec 1, 2024
PURPOSE Breast density is a widely established independent breast cancer risk factor. With the increasing utilization of digital breast tomosynthesis (DBT) in breast cancer screening, there is an opportunity to estimate volumetric breast density (VBD) routinely. However, current available methods extrapolate VBD from two-dimensional (2D) images acquired using DBT and/or depend on the existence of raw DBT data, which is rarely archived by clinical centers because of storage constraints. METHODS We retrospectively analyzed 1,080 nonactionable three-dimensional (3D) reconstructed DBT screening examinations acquired between 2011 and 2016. Reference tissue segmentations were generated using previously validated software that uses 3D reconstructed slices and raw 2D DBT data. We developed a deep learning (DL) model that segments dense and fatty breast tissue from background. We then applied this model to estimate %VBD and absolute dense volume (ADV) in cm 3 in a separate case-control sample (180 cases and 654 controls). We created two conditional logistic regression models, relating each model-derived density measurement to likelihood of contralateral breast cancer diagnosis, adjusted for age, BMI, family history, and menopausal status. RESULTS The DL model achieved unweighted and weighted Dice scores of 0.88 (standard deviation [SD] = 0.08) and 0.76 (SD = 0.15), respectively, on the held-out test set, demonstrating good agreement between the model and 3D reference segmentations. There was a significant association between the odds of breast cancer diagnosis and model-derived VBD (odds ratio [OR], 1.41 [95 % CI, 1.13 to 1.77]; P = .002), with an AUC of 0.65 (95% CI, 0.60 to 0.69). ADV was also significantly associated with breast cancer diagnosis (OR, 1.45 [95% CI, 1.22 to 1.73]; P < .001) with an AUC of 0.67 (95% CI, 0.62 to 0.71). CONCLUSION DL-derived density measures derived from 3D reconstructed DBT images are associated with breast cancer diagnosis.