LW
Leah Williams
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
10,354
h-index:
49
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer

Manjula Canagaratna et al.Jan 17, 2007
The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described.
0

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application

T. Onasch et al.Mar 14, 2012
The Soot Particle Aerosol Mass Spectrometer (SP-AMS) was developed to measure the chemical and physical properties of particles containing refractory black carbon (rBC). The SP-AMS is an Aerodyne Aerosol Mass Spectrometer (AMS) equipped with an intracavity laser vaporizer (1064 nm) based on the Single Particle Soot Photometer (SP2) design, in addition to the resistively heated, tungsten vaporizer used in a standard AMS. The SP-AMS can be operated with the laser vaporizer alone, with both the laser and tungsten vaporizers, or with the tungsten vaporizer alone. When operating with only the laser vaporizer, the SP-AMS is selectively sensitive to laser-light absorbing particles, such as ambient rBC-containing particles as well as metal nanoparticles, and measures both the refractory and nonrefractory components. When operated with both vaporizers and modulating the laser on and off, the instrument measures the refractory components of absorbing particles and the nonrefractory particulate matter of all sampled particles. The SP-AMS design, mass spectral interpretation, calibration, and sensitivity are described. Instrument calibrations yield a sensitivity of greater than 140 carbon ions detected per picogram of rBC mass sampled, a 3σ detection limit of less than 0.1 μg·m−3 for 60 s averaging, and a mass-specific ionization efficiency relative to particulate nitrate of 0.2 ± 0.1. Sensitivities were found to vary depending upon laser-particle beam overlap. The utility of the instrument to characterize ambient rBC aerosol is demonstrated. Copyright 2012 American Association for Aerosol Research
0
Paper
Citation439
0
Save
0

Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA)

Andrew Lambe et al.Sep 1, 2011
Abstract. Secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA) were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM) flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS). The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44), the hydrogen-to-carbon (H/C) ratio, and the oxygen-to-carbon (O/C) ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA). The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44–f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN) activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04) ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and oxidation level can be defined for use in chemistry and climate models.
0

Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer

Peter Liu et al.Jul 5, 2007
The size-dependent particle transmission efficiency of the aerodynamic lens system used in the Aerodyne Aerosol Mass Spectrometer (AMS) was investigated with computational fluid dynamics (CFD) calculations and experimental measurements. The CFD calculations revealed that the entire lens system, including the aerodynamic lens itself, the critical orifice which defines the operating lens pressure, and a valve assembly, needs to be considered. Previous calculations considered only the aerodynamic lens. The calculations also investigated the effect of operating the lens system at two different sampling pressures, 7.8 × 104 Pa (585 torr) and 1.0 × 105 Pa (760 torr). Experimental measurements of transmission efficiency were performed with size-selected diethyl hexyl sebacate (DEHS), NH4NO3, and NaNO3 particles on three different AMS instruments at two different ambient sampling pressures (7.8 × 104 Pa, 585 torr and 1.0 × 105 Pa, 760 torr). Comparisons of the measurements and the calculations show qualitative agreement, but there are significant deviations which are as yet unexplained. On the small size end (30 nm to 150 nm vacuum aerodynamic diameter), the measured transmission efficiency is lower than predicted. On the large size end (> 350 nm vacuum aerodynamic diameter) the measured transmission efficiency is greater than predicted at 7.8 × 104 Pa (585 torr) and in good agreement with the prediction at 1.0 × 105 Pa (760 torr).
0

Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time

Claudia Mohr et al.May 28, 2013
We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January–February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m–3, with a mean value of 20 ng m–3. We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)−1. Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.
0

Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

Andrew Lambe et al.Mar 4, 2011
Abstract. Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT) and Potential Aerosol Mass (PAM) flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-to-volume (SA/V) ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1) transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl) sebacate (BES) particles, (2) H2SO4 yield measurements from the oxidation of SO2, (3) residence time distribution (RTD) measurements for CO2, SO2, and BES particles, (4) aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN) activity measurements of BES particles exposed to OH radicals, and (5) aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA) generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0) × 1010 to (1.8 ± 0.3) × 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and operating conditions, with wall interactions seemingly having the strongest influence on SOA yield. At comparable OH exposures, flow tube SOA was more oxidized than smog chamber SOA, possibly because of faster gas-phase oxidation relative to particle nucleation. SOA yields were lower in the TPOT than in the PAM, but CCN activity of flow-tube-generated SOA particles was similar. For comparable OH exposures, α-pinene SOA yields were similar in the PAM and Caltech chambers, but m-xylene SOA yields were much lower in the PAM compared to the Caltech chamber.
0

An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles

Jay Slowik et al.Mar 29, 2007
Inter-comparison studies of well-characterized fractal soot particles were conducted using the following four instruments: Aerosol Mass Spectrometer-Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Multi-Angle Absorption Photometer (MAAP), and Photoacoustic Spectrometer (PAS). These instruments provided measurements of the refractory mass (AMS-SMPS), incandescent mass (SP2) and optically absorbing mass (MAAP and PAS). The particles studied were in the mobility diameter range from 150 nm to 460 nm and were generated by controlled flames with fuel equivalence ratios ranging between 2.3 and 3.5. The effect of organic coatings (oleic acid and anthracene) on the instrument measurements was determined. For uncoated soot particles, the mass measurements by the AMS-SMPS, SP2, and PAS instruments were in agreement to within 15%, while the MAAP measurement of optically-absorbing mass was higher by ∼ 50%. Thin organic coatings (∼ 10 nm) did not affect the instrument readings. A thicker (∼ 50 nm) oleic acid coating likewise did not affect the instrument readings. The thicker (∼60 nm) anthracene coating did not affect the readings provided by the AMS-SMPS or SP2 instruments but increased the reading of the MAAP instrument by ∼ 20% and the reading of the PAS by ∼ 65%. The response of each instrument to the different particle types is discussed in terms of particle morphology and coating material.
0
Paper
Citation308
0
Save
Load More