EB
Eytan Bakshy
Author with expertise in Statistical Mechanics of Complex Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
7,128
h-index:
29
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Everyone's an influencer

Eytan Bakshy et al.Feb 1, 2011
In this paper we investigate the attributes and relative influence of 1.6M Twitter users by tracking 74 million diffusion events that took place on the Twitter follower graph over a two month interval in 2009. Unsurprisingly, we find that the largest cascades tend to be generated by users who have been influential in the past and who have a large number of followers. We also find that URLs that were rated more interesting and/or elicited more positive feelings by workers on Mechanical Turk were more likely to spread. In spite of these intuitive results, however, we find that predictions of which particular user or URL will generate large cascades are relatively unreliable. We conclude, therefore, that word-of-mouth diffusion can only be harnessed reliably by targeting large numbers of potential influencers, thereby capturing average effects. Finally, we consider a family of hypothetical marketing strategies, defined by the relative cost of identifying versus compensating potential "influencers." We find that although under some circumstances, the most influential users are also the most cost-effective, under a wide range of plausible assumptions the most cost-effective performance can be realized using "ordinary influencers"---individuals who exert average or even less-than-average influence.
0

Quantifying the invisible audience in social networks

Michael Bernstein et al.Apr 27, 2013
When you share content in an online social network, who is listening? Users have scarce information about who actually sees their content, making their audience seem invisible and difficult to estimate. However, understanding this invisible audience can impact both science and design, since perceived audiences influence content production and self-presentation online. In this paper, we combine survey and large-scale log data to examine how well users' perceptions of their audience match their actual audience on Facebook. We find that social media users consistently underestimate their audience size for their posts, guessing that their audience is just 27% of its true size. Qualitative coding of survey responses reveals folk theories that attempt to reverse-engineer audience size using feedback and friend count, though none of these approaches are particularly accurate. We analyze audience logs for 222,000 Facebook users' posts over the course of one month and find that publicly visible signals --- friend count, likes, and comments --- vary widely and do not strongly indicate the audience of a single post. Despite the variation, users typically reach 61% of their friends each month. Together, our results begin to reveal the invisible undercurrents of audience attention and behavior in online social networks.