YY
Yan Yan
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Reward positivity biases interval production in a continuous timing task

Yan Yan et al.Jul 7, 2023
Abstract The neural circuits of reward processing and interval timing (including perception and production) are functionally intertwined, suggesting that it might be possible for momentary reward processing to influence subsequent timing behavior. Previous animal and human studies have mainly focused on the effect of reward on interval perception, whereas its impact on interval production is less clear. In this study, we examined whether feedback, as an example of performance-contingent reward, biases interval production. We recorded EEG from 20 participants while they engaged in a continuous drumming task with different realistic tempos (1728 trials per participant). Participants received color-coded feedback after each beat about whether they were correct (on time) or incorrect (early or late). Regression-based EEG analysis was used to unmix the rapid occurrence of a feedback response called the reward positivity (RewP), which is traditionally observed in more slow-paced tasks. Using linear mixed modelling, we found that RewP amplitude predicted timing behavior for the upcoming beat. This performance-biasing effect of the RewP was interpreted as reflecting the impact of fluctuations in dopaminergic activities on timing, and the necessity of continuous paradigms to make such observations was highlighted.
1

The Neural Correlates of Continuous Feedback Processing

Cameron Hassall et al.Oct 7, 2022
Abstract Feedback processing is commonly studied by analyzing the brain’s response to discrete rather than continuous events. Such studies have led to the hypothesis that rapid phasic midbrain dopaminergic activity tracks reward prediction errors (RPEs), the effects of which are measurable at the scalp via electroencephalography (EEG). Although studies using continuous feedback are sparse, recent animal work suggests that moment-to-moment changes in reward are tracked by slowly ramping midbrain dopaminergic activity. Some have argued that these ramping signals index state values rather than RPEs. Our goal here was to develop an EEG measure of continuous feedback processing in humans, then test whether its behaviour could be accounted for by the RPE hypothesis. Participants completed a stimulus-response learning task in which a continuous reward cue gradually increased or decreased over time. A regression-based unmixing approach revealed EEG activity with a topography and timecourse consistent with the stimulus-preceding negativity (SPN), a scalp potential previously linked to reward anticipation and tonic dopamine release. Importantly, this reward-related activity depended on outcome expectancy: as predicted by the RPE hypothesis, activity for expected reward cues was reduced compared to unexpected reward cues. These results demonstrate the possibility of using human scalp-recorded potentials to track continuous feedback processing, and test candidate hypotheses of this activity.