EF
Elisabetta Flex
Author with expertise in Protein Tyrosine Phosphatases in Human Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,288
h-index:
33
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Diversity and Functional Consequences of Germline and Somatic PTPN11 Mutations in Human Disease

Marco Tartaglia et al.Jan 6, 2006
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations. Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations. The PTPN11 gene (MIM 176876) encodes SHP-2, a cytoplasmic protein tyrosine phosphatase (PTP) characterized by two tandemly arranged Src homology 2 (SH2) domains at the N-terminus, a catalytic domain, and a C-terminal tail containing a proline-rich region and two tyrosyl residues that undergo reversible phosphorylation (Neel et al. Neel et al., 2003Neel BG Gu H Pao L The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling.Trends Biochem Sci. 2003; 28: 284-293Abstract Full Text Full Text PDF PubMed Scopus (957) Google Scholar). SHP-2 is a critical component of signal transduction for several growth factor–, hormone-, and cytokine-signaling pathways controlling developmental processes (Tang et al. Tang et al., 1995Tang TL Freeman Jr, RM O'Reilly AM Neel BG Sokol SY The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development.Cell. 1995; 80: 473-483Abstract Full Text PDF PubMed Scopus (308) Google Scholar; Saxton et al. Saxton et al., 1997Saxton TM Henkemeyer M Gasca S Shen R Rossi DJ Shalaby F Feng GS Pawson T Abnormal mesoderm pattering in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2.EMBO J. 1997; 16: 2352-2364Crossref PubMed Scopus (403) Google Scholar, Saxton et al., 2000Saxton TM Ciruna BG Holmyard D Kulkarni S Harpal K Rossant J Pawson T The SH2 tyrosine phosphatase Shp2 is required for mammalian limb development.Nat Genet. 2000; 24: 420-423Crossref PubMed Scopus (100) Google Scholar; Qu et al. Qu et al., 1998Qu CK Yu WM Azzarelli B Cooper S Broxmeyer HE Feng G-S Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells.Mol Cell Biol. 1998; 18: 6075-6082Crossref PubMed Scopus (107) Google Scholar; Chen et al. Chen et al., 2000Chen B Bronson RT Klaman LD Hampton TG Wang JF Green PJ Magnuson T Douglas PS Morgan JP Neel BG Mice mutants for Egfr and Shp2 have defective cardiac semilunar valvulogenesis.Nat Genet. 2000; 24: 296-299Crossref PubMed Scopus (242) Google Scholar) and hematopoiesis (Qu et al. Qu et al., 1997Qu CK Shi ZQ Shen R Tsai FY Orkin SH Feng GS A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development.Mol Cell Biol. 1997; 17: 5499-5507Crossref PubMed Scopus (150) Google Scholar, Qu et al., 1998Qu CK Yu WM Azzarelli B Cooper S Broxmeyer HE Feng G-S Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells.Mol Cell Biol. 1998; 18: 6075-6082Crossref PubMed Scopus (107) Google Scholar, Qu et al., 2001Qu CK Nguyen S Chen J Feng GS Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development.Blood. 2001; 97: 911-914Crossref PubMed Scopus (100) Google Scholar), as well as energy balance and metabolism (Zhang et al. Zhang et al., 2004Zhang EE Chapeau E Hagihara K Feng GS Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism.Proc Natl Acad Sci USA. 2004; 101: 16064-16069Crossref PubMed Scopus (206) Google Scholar). Consistent with the crucial role of SHP-2 in development, germline missense mutations in PTPN11 cause Noonan syndrome (NS [MIM 163950]) (Tartaglia et al. Tartaglia et al., 2001Tartaglia M Mehler EL Goldberg R Zampino G Brunner HG Kremer H van der Burgt I Crosby AH Ion A Jeffery S Kalidas K Patton MA Kucherlapati RS Gelb BD Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.Nat Genet. 2001; 29: 465-468Crossref PubMed Scopus (1327) Google Scholar), a developmental disorder characterized by short stature, facial dysmorphisms, skeletal and hematological defects, and cardiovascular abnormalities (Noonan Noonan, 1968Noonan JA Hypertelorism with Turner phenotype: a new syndrome with associated congenital heart disease.Am J Dis Child. 1968; 116: 373-380Crossref PubMed Scopus (453) Google Scholar; Allanson Allanson, 1987Allanson JE Noonan syndrome.J Med Genet. 1987; 24: 9-13Crossref PubMed Scopus (316) Google Scholar). Accumulating genetic, modeling, and biochemical data indicate that PTPN11 mutations account for ∼50% of affected individuals and promote SHP-2 gain of function (Tartaglia and Gelb Tartaglia and Gelb, 2005bTartaglia M Gelb BD Noonan syndrome and related disorders: genetics and pathogenesis.Annu Rev Genomics Hum Genet. 2005; 6: 45-68Crossref PubMed Scopus (275) Google Scholar). Germline lesions in PTPN11 have also been identified in the clinically related LEOPARD syndrome (LS [MIM 151100]) (Digilio et al. Digilio et al., 2002Digilio MC Conti E Sarkozy A Mingarelli R Dottorini T Marino B Pizzuti A Dallapiccola B Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene.Am J Hum Genet. 2002; 71: 389-394Abstract Full Text Full Text PDF PubMed Scopus (313) Google Scholar; Legius et al. Legius et al., 2002Legius E Schrander-Stumpel C Schollen E Pulles-Heintzberger C Gewillig M Fryns JP PTPN11 mutations in LEOPARD syndrome.J Med Genet. 2002; 39: 571-574Crossref PubMed Scopus (203) Google Scholar), with two amino acid substitutions (Y279C and T468M) occurring in the vast majority of subjects (Tartaglia and Gelb Tartaglia and Gelb, 2005bTartaglia M Gelb BD Noonan syndrome and related disorders: genetics and pathogenesis.Annu Rev Genomics Hum Genet. 2005; 6: 45-68Crossref PubMed Scopus (275) Google Scholar). Before the study described in this article, there was no information regarding the consequences of LS-causing PTPN11 mutations on the function of SHP-2. Children with NS are prone to develop malignancies—most commonly, juvenile myelomonocytic leukemia (JMML [MIM 607785]), a myeloproliferative disorder of childhood (Emanuel Emanuel, 2004Emanuel PD Juvenile myelomonocytic leukemia.Curr Hematol Rep. 2004; 3: 203-209PubMed Google Scholar). Since excessive signaling through the RAS/MAPK pathway has been implicated in a wide variety of cancers and because SHP-2 is a positive modulator of RAS signaling (Neel et al. Neel et al., 2003Neel BG Gu H Pao L The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling.Trends Biochem Sci. 2003; 28: 284-293Abstract Full Text Full Text PDF PubMed Scopus (957) Google Scholar; Tartaglia et al. Tartaglia et al., 2004bTartaglia M Niemeyer CM Shannon KM Loh ML SHP-2 and myeloid malignancies.Curr Opin Hematol. 2004; 11: 44-50Crossref PubMed Scopus (91) Google Scholar), it was consistent that germline PTPN11 mutations were present in children with NS and JMML (NS/JMML) (Tartaglia et al. Tartaglia et al., 2003Tartaglia M Niemeyer CM Fragale A Song X Buechner J Jung A Hahlen K Hasle H Licht JD Gelb BD Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet. 2003; 34: 148-150Crossref PubMed Scopus (821) Google Scholar). Moreover, somatic missense mutations in PTPN11 have been documented with variable prevalence in a heterogeneous group of hematologic malignancies (Tartaglia et al. Tartaglia et al., 2003Tartaglia M Niemeyer CM Fragale A Song X Buechner J Jung A Hahlen K Hasle H Licht JD Gelb BD Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet. 2003; 34: 148-150Crossref PubMed Scopus (821) Google Scholar, Tartaglia et al., 2004aTartaglia M Martinelli S Cazzaniga G Cordeddu V Iavarone I Spinelli M Palmi C Carta C Pession A Arico M Masera G Basso G Sorcini M Gelb BD Biondi A Genetic evidence for lineage- and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia.Blood. 2004; 104: 307-313Crossref PubMed Scopus (233) Google Scholar, Tartaglia et al., 2005Tartaglia M Martinelli S Iavarone I Cazzaniga G Spinelli M Giarin E Petrangeli V Carta C Masetti R Aricò M Locatelli F Basso G Sorcini M Pession A Biondi A Somatic PTPN11 mutations in childhood acute myeloid leukaemia.Br J Haematol. 2005; 129: 333-339Crossref PubMed Scopus (58) Google Scholar; Loh et al. Loh et al., 2004aLoh ML Reynolds MG Vattikuti S Gerbing RB Alonzo TA Carlson E Cheng JW Lee CM Lange BJ Meshinchi S PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group.Leukemia. 2004; 18: 1831-1834Crossref PubMed Scopus (101) Google Scholar, Loh et al., 2004bLoh ML Vattikuti S Schubbert S Reynolds MG Carlson E Lieuw KH Cheng JW Lee CM Stokoe D Bonifas JM Curtiss NP Gotlib J Meshinchi S Le Beau MM Emanuel PD Shannon KM Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis.Blood. 2004; 103: 2325-2331Crossref PubMed Scopus (348) Google Scholar, Loh et al., 2005Loh ML Martinelli S Cordeddu V Reynolds MG Vattikuti S Lee CM Wulfert M Germing U Haas P Niemeyer C Beran ME Strom S Lubbert M Sorcini M Estey EH Gattermann N Tartaglia M Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia.Leuk Res. 2005; 29: 459-462Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar) and solid tumors (Bentires-Alj et al. Bentires-Alj et al., 2004Bentires-Alj M Paez JG David FS Keilhack H Halmos B Naoki K Maris JM Richardson A Bardelli A Sugarbaker DJ Richards WG Du J Girard L Minna JD Loh ML Fisher DE Velculescu VE Vogelstein B Meyerson M Sellers WR Neel BG Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.Cancer Res. 2004; 64: 8816-8820Crossref PubMed Scopus (417) Google Scholar). Similar to what was observed for NS, genetic, biochemical, and functional data support the view that acquired lesions contributing to leukemia promote SHP-2 gain of function (Tartaglia et al. Tartaglia et al., 2003Tartaglia M Niemeyer CM Fragale A Song X Buechner J Jung A Hahlen K Hasle H Licht JD Gelb BD Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet. 2003; 34: 148-150Crossref PubMed Scopus (821) Google Scholar; Chan et al. Chan et al., 2005Chan RJ Leedy MB Munugalavadla V Voorhorst CS Li Y Yu M Kapur R Human somatic PTPN11 mutations induce hematopoietic cell hypersensitivity to granulocyte-macrophage colony stimulating factor.Blood. 2005; 105: 3737-3742Crossref PubMed Scopus (133) Google Scholar; Keilhack et al. Keilhack et al., 2005Keilhack H David FS McGregor M Cantley LC Neel BG Diverse biochemical properties of Shp2 mutants: implications for disease phenotypes.J Biol Chem. 2005; 280: 30984-30993Crossref PubMed Scopus (234) Google Scholar; Mohi et al. Mohi et al., 2005Mohi MG Williams IR Dearolf CR Chan G Kutok JL Cohen S Morgan K Boulton C Shigematsu H Keilhack H Akashi K Gilliland DG Neel BG Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations.Cancer Cell. 2005; 7: 179-191Abstract Full Text Full Text PDF PubMed Scopus (220) Google Scholar; Shubbert et al. Shubbert et al., 2005Shubbert S Lieuw K Rowe SL Lee CM Li X Loh ML Clapp DW Shannon KM Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells.Blood. 2005; 106: 311-317Crossref PubMed Scopus (127) Google Scholar), providing the first evidence of a mutated PTP acting as an oncoprotein in cancer. Our initial studies indicated that mutations identified in NS (germline origin) and leukemia (somatic origin) rarely overlap (Tartaglia et al. Tartaglia et al., 2003Tartaglia M Niemeyer CM Fragale A Song X Buechner J Jung A Hahlen K Hasle H Licht JD Gelb BD Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet. 2003; 34: 148-150Crossref PubMed Scopus (821) Google Scholar). On the basis of those results, we proposed a model requiring at least two classes of activating mutations of PTPN11 with different roles in development and leukemogenesis. A third class, as-yet functionally uncharacterized, would include a few mutations, including the recurrent LS-causing lesions, which affect residues clustering within or in proximity to the active site of the protein and are predicted to impair catalysis. To test this model, we investigated the diversity and structural consequences of germline and somatic PTPN11 mutations, delineated their association with disease, and characterized biochemically and structurally a panel of amino acid changes recurring in NS, LS, and leukemia that affect distinct functional domains of the protein. Two large cohorts containing subjects with NS or LS who might have germline PTPN11 mutations (N=425) and those with hematologic malignancies (N=303) who might have somatic ones were included in the study. For the NS/LS cohort, there were two groups. For one (N=116), subjects were enrolled in research protocols. Clinical features for the majority of these individuals satisfied the diagnostic criteria reported by van der Burgt et al. (van der Burgt et al., 1994van der Burgt I Berends E Lommen E van Beersum S Hamel B Mariman E Clinical and molecular studies in a large Dutch family with Noonan syndrome.Am J Med Genet. 1994; 53: 187-191Crossref PubMed Scopus (218) Google Scholar) or Voron et al. (Voron et al., 1976Voron DA Hatfield HH Kalkhoff MD Multiple lentigines syndrome: case report and review of the literature.Am J Med. 1976; 60: 447-456Abstract Full Text PDF PubMed Scopus (174) Google Scholar), but individuals who lacked sufficient features to receive a definitive diagnosis were also included in the study. The second group (N=309) comprised mutation data from anonymous samples from individuals with phenotypes suggestive of NS or LS and prompting commercial DNA diagnostic testing at GeneDx (Gaithersburg, MD); no phenotype data were available for these persons. In the leukemia cohort, which included 63 children with JMML, 147 adult subjects with acute myeloid leukemia (AML), and 93 adult subjects with acute lymphoblastic leukemia (ALL), diagnosis was established according to standard morphologic, cytochemical, and immunological criteria (Bene et al. Bene et al., 1995Bene MC Castoldi G Knapp W Ludwig WD Matutes E Orfao A van't Veer MB Proposals for the immunological classification of acute leukemias.Leukemia. 1995; 9: 1783-1786PubMed Google Scholar; Emanuel Emanuel, 2004Emanuel PD Juvenile myelomonocytic leukemia.Curr Hematol Rep. 2004; 3: 203-209PubMed Google Scholar) and was centrally reviewed (R.F., C.S., and P.D.E.). All nonanonymous samples were collected under institutional review board–approved protocols and with informed consent. Genomic DNA was isolated from peripheral blood lymphocytes (NS/LS) or from bone marrow aspirates (leukemias) obtained at the time of diagnosis, before therapy, as well as during follow-up. PTPN11 mutational screening was performed by denaturing high-performance liquid chromatography analysis with the use of the Wave 2100 System (Transgenomics) at column temperatures recommended by the Navigator version 1.5.4.23 software (Transgenomics), as described elsewhere (Tartaglia et al. Tartaglia et al., 2002Tartaglia M Kalidas K Shaw A Song X Musat DL van der Burgt I Brunner HG Bertola DR Crosby A Ion A Kucherlapati RS Jeffery S Patton MA Gelb BD PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity.Am J Hum Genet. 2002; 70: 1555-1563Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar, Tartaglia et al., 2004aTartaglia M Martinelli S Cazzaniga G Cordeddu V Iavarone I Spinelli M Palmi C Carta C Pession A Arico M Masera G Basso G Sorcini M Gelb BD Biondi A Genetic evidence for lineage- and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia.Blood. 2004; 104: 307-313Crossref PubMed Scopus (233) Google Scholar). Amplimers having abnormal denaturing profiles were purified (Microcon PCR [Millipore]) and were sequenced bidirectionally with the use of the ABI BigDye Terminator Sequencing Kit v.1.1 (Applied Biosystems) and an ABI Prism 310 Genetic Analyzer (Applied Biosystems). Length and dinucleotide mutations were determined by cloning purified PCR products in a pCR 2.1 TOPO vector (Invitrogen) and sequencing purified clones (Plasmid Mini Kit, Qiagen). The entire PTPN11 coding sequence was screened in the NS/LS cohort. On the basis of our previously generated data, exons 1, 2, 3, 4, 7, 8, 12, 13, and 14—encompassing all the PTPN11 lesions identified in NS, LS, and leukemias—were screened in the leukemia cohort. Germline and somatic PTPN11 mutations reported in studies published (or available online as preprint versions) before September 2005 were collected. In the resulting database, germline mutations referred to lesions identified in subjects with a developmental disorder (NS, LS, or a related condition), whereas somatic mutations referred to defects identified in subjects with isolated hematologic malignancies, preleukemic disorders, or solid tumors. The database and relative references are reported in table 1.Table 1SHP-2 Affected Residues and Amino Acid Changes Germinally Transmitted or Somatically AcquiredAmino Acid (Mutation Group) and ChangeGermline Origin (N=573)aReferences for germline mutations: Bentires-Alj et al. 2004; Bertola et al. 2004, 2005; Binder et al. 2005; Conti et al. 2003; Digilio et al. 2002, 2004; Ferreira et al. 2005; Jafarov et al. 2005; Jongmans et al. 2005; Kalidas et al. 2005; Keren et al. 2004; Kondoh et al. 2003; Kosaki et al. 2002; Kratz et al. 2005; Lee et al. 2005a, 2005b; Legius et al. 2002; Loh et al. 2004b; Maheshwari et al. 2002; Matsubara et al. 2005; Musante et al. 2003; Niihori et al. 2005; Sarkozy et al. 2003, 2004a, 2004b; Schluter et al. 2005; Schollen et al. 2003a, 2003b; Takahashi et al. 2005; Tartaglia et al. 2001, 2002, 2003; Yoshida et al. 2004a, 2004b, 2004c; Weismann et al. 2005; Zenker et al. 2004; present article.Somatic Origin (N=256)bReferences for somatic mutations: Bentires-Alj et al. 2004; Goemans et al. 2005; Hasegawa et al. 2005; Hugues et al. 2005; Johan et al. 2004; Kratz et al. 2005; Loh et al. 2004a, 2004b, 2005; Niihori et al. 2005; Nomdedeu et al. 2005; Shimada et al. 2004; Smith et al. 2005; Tartaglia et al. 2003, 2004a, 2005; present article.T2 (I): I3…T42 (V): A11…L43 (V): F1cIdentified in a subject with isolated congenital heart disease.…T52 (V): S…2H53 (V): Q…1N58 (I): H1… D6… K3… Y…1G60 (I): S1… A131 R…3 V…15 Deletion1…D61 (I): N163 G231 H…1 Y…19 V…15 Deletion2dIncluding one case with G60V+delD61.…Y62 (I): N1… D17… C1…Y63 (I): C441E69 (I): Q2… V…1 G…1 K…10F71 (I): L14 I1… K…2A72 (I): S18… G16… T…20 V…23 D…1T73 (I): I216E76 (I): D13… K…47 Q…6 V…6 G…23 A…5 M…1L77 (I): V…1Q79 (I): P2… R30…D106 (VI): A10…E110 (VI): A2…R138 (V): Q…1E139 (V): D161eDetailed clinical information was not available in this case (see Loh et al. 2004b).Q256 (I): R6… K1…G268 (IV): S1… C1…Y279 (II): S2… C33…I282 (II): V12…F285 (IV): L5… S7… C1…R289 (IV): G…1N308 (IV): D92… S21… T3…I309 (IV): V2…T411 (…): M1…A461 (II): T2…G464 (II): A3…T468 (IV): M29…P491 (IV): S41 L42R498 (IV): W2… L1…R501 (IV): K1…S502 (III): T91 A21 L22 P…3G503 (III): R141 L…1 E…2 V…6 A…10M504 (IV): V21…Q506 (II): P7…T507 (II): K…2Q510 (II): K…1 E3… P3… R1…L560 (…): F1…Note.—Database updated to August 2005.a References for germline mutations: Bentires-Alj et al. Bentires-Alj et al., 2004Bentires-Alj M Paez JG David FS Keilhack H Halmos B Naoki K Maris JM Richardson A Bardelli A Sugarbaker DJ Richards WG Du J Girard L Minna JD Loh ML Fisher DE Velculescu VE Vogelstein B Meyerson M Sellers WR Neel BG Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.Cancer Res. 2004; 64: 8816-8820Crossref PubMed Scopus (417) Google Scholar; Bertola et al. Bertola et al., 2004Bertola DR Pereira AC Oliveira PS Kim CA Krieger JE Clinical variability in a Noonan syndrome family with a new PTPN11 gene mutation.Am J Med Genet A. 2004; 130: 378-383Crossref Scopus (33) Google Scholar, Bertola et al., 2005Bertola DR Pereira AC Passetti F de Oliveira PS Messiaen L Gelb BD Kim CA Krieger JE Neurofibromatosis-Noonan syndrome: molecular evidence of the concurrence of both disorders in a patient.Am J Med Genet A. 2005; 136: 242-245Crossref PubMed Scopus (69) Google Scholar; Binder et al. Binder et al., 2005Binder G Neuer K Ranke MB Wittekindt NE PTPN11 mutations are associated with mild growth hormone resistance in individuals with Noonan syndrome.J Clin Endocrinol Metab. 2005; 90: 5377-5381Crossref PubMed Scopus (130) Google Scholar; Conti et al. Conti et al., 2003Conti E Dottorini T Sarkozy A Tiller GE Esposito G Pizzuti A Dallapiccola B A novel PTPN11 mutation in LEOPARD syndrome.Hum Mutat. 2003; 21: 654Crossref PubMed Scopus (26) Google Scholar; Digilio et al. Digilio et al., 2002Digilio MC Conti E Sarkozy A Mingarelli R Dottorini T Marino B Pizzuti A Dallapiccola B Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene.Am J Hum Genet. 2002; 71: 389-394Abstract Full Text Full Text PDF PubMed Scopus (313) Google Scholar, Digilio et al., 2004Digilio MC Pacileo G Sarkozy A Limongelli G Conti E Cerrato F Marino B Pizzuti A Calabro R Dallapiccola B Familial aggregation of genetically heterogeneous hypertrophic cardiomyopathy: a boy with LEOPARD syndrome due to PTPN11 mutation and his nonsyndromic father lacking PTPN11 mutations.Birth Defects Res A Clin Mol Teratol. 2004; 70: 95-98Crossref PubMed Scopus (15) Google Scholar; Ferreira et al. Ferreira et al., 2005Ferreira LV Souza SA Arnhold IJ Mendonca BB Jorge AA PTPN11 (protein tyrosine phosphatase, nonreceptor type 11) mutations and response to growth hormone therapy in children with Noonan syndrome.J Clin Endocrinol Metab. 2005; 90: 5156-5160Crossref PubMed Scopus (78) Google Scholar; Jafarov et al. Jafarov et al., 2005Jafarov T Ferimazova N Reichenberger E Noonan-like syndrome mutations in PTPN11 in patients diagnosed with cherubism.Clin Genet. 2005; 68: 190-191Crossref PubMed Scopus (44) Google Scholar; Jongmans et al. Jongmans et al., 2005Jongmans M Sistermans EA Rikken A Nillesen WM Tamminga R Patton M Maier EM Tartaglia M Noordam K van der Burgt I Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature.Am J Med Genet A. 2005; 134: 165-170Crossref Scopus (97) Google Scholar; Kalidas et al. Kalidas et al., 2005Kalidas K Shaw AC Crosby AH Newbury-Ecob R Greenhalgh L Temple IK Law C Patel A Patton MA Jeffery S Genetic heterogeneity in LEOPARD syndrome: two families with no mutations in PTPN11.J Hum Genet. 2005; 50: 21-25Crossref PubMed Scopus (25) Google Scholar; Keren et al. Keren et al., 2004Keren B Hadchouel A Saba S Sznajer Y Bonneau D Leheup B Boute O Gaillard D Lacombe D Layet V Marlin S Mortier G Toutain A Beylot C Baumann C Verloes A Cave H PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience.J Med Genet. 2004; 41: e117Crossref PubMed Scopus (72) Google Scholar; Kondoh et al. Kondoh et al., 2003Kondoh T Ishii E Aoki Y Shimizu T Zaitsu M Matsubara Y Moriuchi H Noonan syndrome with leukaemoid reaction and overproduction of catecholamines: a case report.Eur J Pediatr. 2003; 162: 548-549Crossref PubMed Scopus (17) Google Scholar; Kosaki et al. Kosaki et al., 2002Kosaki K Suzuki T Muroya K Hasegawa T Sato S Matsuo N Kosaki R Nagai T Hasegawa Y Ogata T PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome.J Clin Endocrinol Metab. 2002; 87: 3529-3533Crossref PubMed Scopus (81) Google Scholar; Kratz et al. Kratz et al., 2005Kratz CP Niemeyer CM Castleberry RP Cetin M Bergstrasser E Emanuel PD Hasle H Kardos G Klein C Kojima S Stary J Trebo M Zecca M Gelb BD Tartaglia M Loh ML The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease.Blood. 2005; 106: 2183-2185Crossref PubMed Scopus (204) Google Scholar; Lee et al. Lee et al., 2005aLee JS Tartaglia M Gelb BD Fridrich K Sachs S Stratakis CA Muenke M Robey PG Collins MT Slavotinek A Phenotypic and genotypic characterisation of Noonan-like/multiple giant cell lesion syndrome.J Med Genet. 2005; 42: e11Crossref PubMed Scopus (61) Google Scholar, Lee et al., 2005bLee WH Raas-Rotschild A Miteva MA Bolasco G Rein A Gillis D Vidaud D Vidaud M Villoutreix BO Parfait B Noonan syndrome type I with PTPN11 3 bp deletion: structure-function implications.Proteins. 2005; 58: 7-13Crossref PubMed Scopus (13) Google Scholar; Legius et al. Legius et al., 2002Legius E Schrander-Stumpel C Schollen E Pulles-Heintzberger C Gewillig M Fryns JP PTPN11 mutations in LEOPARD syndrome.J Med Genet. 2002; 39: 571-574Crossref PubMed Scopus (203) Google Scholar; Loh et al. Loh et al., 2004bLoh ML Vattikuti S Schubbert S Reynolds MG Carlson E Lieuw KH Cheng JW Lee CM Stokoe D Bonifas JM Curtiss NP Gotlib J Meshinchi S Le Beau MM Emanuel PD Shannon KM Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis.Blood. 2004; 103: 2325-2331Crossref PubMed Scopus (348) Google Scholar; Maheshwari et al. Maheshwari et al., 2002Maheshwari M Belmont J Fernbach S Ho T Molinari L Yakub I Yu F Combes A Towbin J Craigen WJ Gibbs R PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13.Hum Mutat. 2002; 20: 298-304Crossref PubMed Scopus (69) Google Scholar; Matsubara et al. Matsubara et al., 2005Matsubara K Yabe H Ogata T Yoshida R Fukaya T Acute myeloid leukemia in an adult Noonan syndrome patient with PTPN11 mutation.Am J Hematol. 2005; 79: 171-172Crossref PubMed Scopus (11) Google Scholar; Musante et al. Musante et al., 2003Musante L Kehl HG Majewski F Meinecke P Schweiger S Wieczorek D Hinkel GK Tinschert S Hoeltzenbein M Ropers HH Kalscheuer VM Spectrum of mutations in PTPN11 and genotype-phenotype correlation in 96 patients with Noonan syndrome and five patients with cardio-facio-cutaneous syndrome.Eur J Hum Genet. 2003; 11: 201-206Crossref PubMed Scopus (118) Google Scholar; Niihori et al. Niihori et al., 2005Niihori T Aoki Y Ohashi H Kurosawa K Kondoh T Ishikiriyama S Kawame H Kamasaki H Yamanaka T Takada F Nishio K Sakurai M Tamai H Nagashima T Suzuki Y Kure S Fujii K Imaizumi M Matsubara Y Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia.J Hum Genet. 2005; 50: 192-202Crossref PubMed Scopus (95) Google Scholar; Sarkozy et al. Sarkozy et al., 2003Sarkozy A Conti E Seripa D Digilio MC Grifone N Tandoi C Fazio VM Di Ciommo V Marino B Pizzuti A Dallapiccola B Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes.J Med Genet. 2003; 40: 704-708Crossref PubMed Scopus (157) Google Scholar, Sarkozy et al., 2004aSarkozy A Conti E Digilio MC Marino B Morini E Pacileo G Wilson M Calabro R Pizzuti A Dallapiccola B Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome.J Med Genet. 2004; 41: e68Crossref PubMed Scopus (116) Google Scholar, Sarkozy et al., 2004bSarkozy A Obregon MG Conti E Esposito G Mingarelli R Pizzuti A Dallapiccola B A novel PTPN11 gene mutation bridges Noonan syndrome, multiple lentigines/LEOPARD syndrome and Noonan-like/multiple giant cell lesion syndrome.Eur J Hum Genet. 2004; 12: 1069-1072Crossref
0
Citation387
0
Save
0

Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair

Viviana Cordeddu et al.Aug 16, 2009
N-myristoylation is a common form of co-translational protein fatty acylation resulting from the attachment of myristate to a required N-terminal glycine residue. We show that aberrantly acquired N-myristoylation of SHOC2, a leucine-rich repeat-containing protein that positively modulates RAS-MAPK signal flow, underlies a clinically distinctive condition of the neuro-cardio-facial-cutaneous disorders family. Twenty-five subjects with a relatively consistent phenotype previously termed Noonan-like syndrome with loose anagen hair (MIM607721) shared the 4A>G missense change in SHOC2 (producing an S2G amino acid substitution) that introduces an N-myristoylation site, resulting in aberrant targeting of SHOC2 to the plasma membrane and impaired translocation to the nucleus upon growth factor stimulation. Expression of SHOC2(S2G) in vitro enhanced MAPK activation in a cell type-specific fashion. Induction of SHOC2(S2G) in Caenorhabditis elegans engendered protruding vulva, a neomorphic phenotype previously associated with aberrant signaling. These results document the first example of an acquired N-terminal lipid modification of a protein causing human disease.
0
Citation385
0
Save
0

Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia

Elisabetta Flex et al.Mar 24, 2008
Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3–independent growth in Ba/F3 cells and/or IL-9–independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.
0
Citation323
0
Save