UK
U. Kleineberg
Author with expertise in Attosecond Physics and Optics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
8,574
h-index:
33
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Attosecond spectroscopy in condensed matter

A. Cavalieri et al.Oct 1, 2007
Electrons move in solids at very high speed — traversing atomic layers and interfaces within tens to hundreds of attoseconds (an attosecond is a billionth of a billionth of a second). These astonishingly brief travel times will ultimately limit the speed of the electronics of the future. Physicists have now experimentally probed such electron dynamics in real time. The cover illustrates the first attosecond spectroscopic measurement in a solid, revealing a 110-attosecond difference in the travel time of two different types of electrons following photoexcitation in a tungsten crystal. The ability to time electrons moving in solids over merely a few interatomic distances makes it possible to probe the solid-state electronic processes occurring at the ultimate speed limit and thus helps to advance technologies such as computation, data storage and photovoltaics, which all rely on exquisite control of electron transport in ever smaller structures of solid matter. When exposing a tungsten crystal to intense light, the travel times of emitted electrons differ by 110 attoseconds, depending on whether they were originally tightly bound to one atom in the crystal or delocalized over many atoms. This ability to directly probe fundamental aspects of solid-state electron dynamics could aid the further development of modern technologies such as electronics, information processing and photovoltaics. Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10-18 s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10-15 s) timescale and has been mapped in solids in real time1,2 using femtosecond X-ray sources3. Here we extend the attosecond techniques4,5 previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.