Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser428, and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKβ, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases. Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser428, and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKβ, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases. AMPK (AMP-activated protein kinase) 2The abbreviations used are: AMPK, AMP-activated protein kinase; DN-AMPK, dominant negative AMPK; ACC, acetyl-CoA carboxylase; AICAR, 5-amino-4-imidazolecarboxamide riboside; CaMKKβ, Ca2+/calmodulin-dependent protein kinase kinase β; S17834, a synthetic polyphenol (6,8-diallyl-5,7-dihydroxy-2-(2-allyl-3-hydroxy-4-methoxyphenyl)1-H benzo-(b)pyran-4-one); shRNA, short hairpin RNA; GFP, green fluorescent protein; DMEM, Dulbecco's modified Eagle's medium; Ad, adenovirus. serves as a sensor of cellular energy status, being activated by increased AMP/ATP ratio or by the upstream kinases, LKB1 (the tumor suppressor kinase), CaMKKβ (Ca2+/calmodulin-dependent protein kinase kinase β), and TAK1 (transforming growth factor-β-activated kinase-1) (1Shaw R.J. Kosmatka M. Bardeesy N. Hurley R.L. Witters L.A. DePinho R.A. Cantley L.C. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 3329-3335Crossref PubMed Scopus (1480) Google Scholar, 2Shaw R.J. Lamia K.A. Vasquez D. Koo S.H. Bardeesy N. DePinho R.A. Montminy M. Cantley L.C. Science. 2005; 310: 1642-1646Crossref PubMed Scopus (1604) Google Scholar, 3Hurley R.L. Anderson K.A. Franzone J.M. Kemp B.E. Means A.R. Witters L.A. J. Biol. Chem. 2005; 280: 29060-29066Abstract Full Text Full Text PDF PubMed Scopus (834) Google Scholar, 4Long Y.C. Zierath J.R. J. Clin. Invest. 2006; 116: 1776-1783Crossref PubMed Scopus (797) Google Scholar, 5Hawley S.A. Pan D.A. Mustard K.J. Ross L. Bain J. Edelman A.M. Frenguelli B.G. Hardie D.G. Cell Metab. 2005; 2: 9-19Abstract Full Text Full Text PDF PubMed Scopus (1317) Google Scholar, 6Momcilovic M. Hong S.P. Carlson M. J. Biol. Chem. 2006; 281: 25336-25343Abstract Full Text Full Text PDF PubMed Scopus (390) Google Scholar, 7Xie M. Zhang D. Dyck J.R.B. Li Y. Zhang H. Morishima M. Mann D.L. Taffet G.E. Baldini A. Khoury D.S. Schneider M.D. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 17378-17383Crossref PubMed Scopus (296) Google Scholar). Our previous studies demonstrated that dysfunction of hepatic AMPK induced by hyperglycemia represents a key mechanism for hepatic lipid accumulation and hyperlipidemia associated with diabetes (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). Also, metformin, an antidiabetic drug, lowers systemic and hepatic lipids via activating LKB1/AMPK signaling (2Shaw R.J. Lamia K.A. Vasquez D. Koo S.H. Bardeesy N. DePinho R.A. Montminy M. Cantley L.C. Science. 2005; 310: 1642-1646Crossref PubMed Scopus (1604) Google Scholar, 8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 10Zhou G.C. Myers R. Li Y. Chen Y.L. Shen X.L. Fenyk-Melody J. Wu M. Ventre J. Doebber T. Fujii N. Musi N. Hirshman M.F. Goodyear L.J. Moller D.E. J. Clin. Invest. 2001; 108: 1167-1174Crossref PubMed Scopus (4575) Google Scholar). Our recent studies with human hepatocytes and type 1 diabetic LDL receptor-deficient (LDLR–/–) mice have shown that polyphenols strongly stimulate hepatic AMPK and reduce lipid accumulation, which in turn attenuates hyperlipidemia and atherosclerosis in diabetic mice (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). Therefore, AMPK activation by polyphenols or metformin may be at least partially responsible for their therapeutic benefits on hyperlipidemia in diabetes (2Shaw R.J. Lamia K.A. Vasquez D. Koo S.H. Bardeesy N. DePinho R.A. Montminy M. Cantley L.C. Science. 2005; 310: 1642-1646Crossref PubMed Scopus (1604) Google Scholar, 8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). Resveratrol also stimulates AMPK in neurons (11Dasgupta B. Milbrandt J. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 7217-7222Crossref PubMed Scopus (656) Google Scholar). However, rapid activation of AMPK by polyphenols has been shown to be independent of altered adenine nucleotide levels (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 11Dasgupta B. Milbrandt J. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 7217-7222Crossref PubMed Scopus (656) Google Scholar). Also, resveratrol activates AMPK in intact cells via an indirect mechanism, since it does not activate AMPK in a cell-free assay (12Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M.Y. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3760) Google Scholar). The signaling molecules that mediate the metabolic actions of AMPK activation by polyphenols are poorly understood. SIRT1, a mammalian ortholog of Sir2 (silent information regulator 2), is an NAD-dependent deacetylase that acts as a master metabolic sensor of NAD+ and modulates cellular metabolism and life span (13Blander G. Guarente L. Annu. Rev. Biochem. 2004; 73: 417-435Crossref PubMed Scopus (1333) Google Scholar, 14Leibiger I.B. Berggren P.O. Nat. Med. 2006; 12: 34-36Crossref PubMed Scopus (104) Google Scholar, 15Gerhart-Hines Z. Rodgers J.T. Bare O. Kim C.L.S.H. Kim S.H. Mostoslavsky R. Alt F.W. Wu Z.D. Puigserver P. EMBO J. 2007; 26: 1913-1923Crossref PubMed Scopus (1054) Google Scholar) and delays the onset of age-related diseases (16Guarente L. Nature. 2006; 444: 868-874Crossref PubMed Scopus (388) Google Scholar). SIRT1 has been implicated in the control of energy metabolism through deacetylation of FOXO and PGC-1α (proliferator-activated receptor γ coactivator 1) (13Blander G. Guarente L. Annu. Rev. Biochem. 2004; 73: 417-435Crossref PubMed Scopus (1333) Google Scholar, 17Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nature. 2005; 434: 113-118Crossref PubMed Scopus (2662) Google Scholar, 18Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 12861-12866Crossref PubMed Scopus (458) Google Scholar). The impact of SIRT1 on diabetes is evidenced by the fact that newly discovered small molecule activators of SIRT1 improve insulin sensitivity in type 2 diabetes (19Sun C. Zhang F. Ge X.J. Yan T.T. Chen X.M. Shi X.L. Zhai Q.W. Cell Metab. 2007; 6: 307-319Abstract Full Text Full Text PDF PubMed Scopus (648) Google Scholar). Resveratrol, a putative mimetic of caloric restriction, increases mitochondrial biogenesis and insulin sensitivity through SIRT1 activation (12Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M.Y. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3760) Google Scholar, 19Sun C. Zhang F. Ge X.J. Yan T.T. Chen X.M. Shi X.L. Zhai Q.W. Cell Metab. 2007; 6: 307-319Abstract Full Text Full Text PDF PubMed Scopus (648) Google Scholar, 20Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3432) Google Scholar, 21Milne J.C. Lambert P.D. Schenk S. Carney D.P. Smith J.J. Gagne D.J. Jin L. Boss O. Perni R.B. Vu C.B. Bemis J.E. Xie R. Disch J.S. Ng P.Y. Nunes J.J. Lynch A.V. Yang H.Y. Galonek H. Israelian K. Choy W. Iffland A. Lavu S. Medvedik O. Sinclair D.A. Olefsky J.M. Jirousek M.R. Elliott P.J. Westphal C.H. Nature. 2007; 450: 712-716Crossref PubMed Scopus (1496) Google Scholar). Interestingly, the insulin sensitivity and mitochondrial activity are also regulated by AMPK (22Reznick R.M. Zong H.H. Li J. Morino K. Moore I.K. Yu H.J. Liu Z.X. Dong J.Y. Mustard K.J. Hawley S.A. Befroy D. Pypaert M. Hardie D.G. Young L.H. Shulman G.I. Cell Metab. 2007; 5: 151-156Abstract Full Text Full Text PDF PubMed Scopus (421) Google Scholar, 23Kahn B.B. Alquier T. Carling D. Hardie D.G. Cell Metab. 2005; 1: 15-25Abstract Full Text Full Text PDF PubMed Scopus (2372) Google Scholar). Because some of the beneficial metabolic actions of polyphenols are mediated by their ability to activate SIRT1 (12Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M.Y. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3760) Google Scholar, 20Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3432) Google Scholar) or AMPK (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar), we hypothesized that polyphenols may protect against high glucose-induced lipid accumulation in hepatocytes by activating SIRT1 and AMPK. The aim of the present study is to test whether SIRT1 is a critical regulator of AMPK signaling in controlling hepatocellular lipid metabolism. We show here that polyphenols, including resveratrol and 6,8-diallyl-5,7-dihydroxy-2-(2-allyl-3-hydroxy-4-methoxyphenyl)1-H benzo(b)pyran-4-one (S17834), potently increase both SIRT1 deacetylase activity and AMPK activity, which in turn reduces lipid accumulation in HepG2 hepatocytes exposed to high glucose. Also, these responses to polyphenols are dependent on SIRT1. Moreover, adenoviral overexpression of SIRT1 increases the basal AMPK activity in HepG2 cells and in mouse liver. SIRT1 also suppresses expression of FAS (fatty acid synthase) and lipid accumulation through activating AMPK. Furthermore, AMPK activation by polyphenol-activated SIRT1 is mediated by the upstream kinase, LKB1, but not CaMKKβ. Therefore, SIRT1 activation by polyphenols functions as an upstream regulator in the LKB1/AMPK signaling axis. Because of the associated improvements of hyperlipidemia and atherosclerosis observed in type 1 or type 2 diabetic mice treated with polyphenols (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 12Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M.Y. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3760) Google Scholar, 20Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3432) Google Scholar), these findings suggest that targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for lipid metabolic disorders and accelerated atherosclerosis in diabetes and age-related diseases. Reagents and Antibodies—The SIRT1 activity assay kits (catalog number AK-555) were purchased from BIOMOL (Plymouth Meeting, PA). Adenopure™ kits for adenovirus purification were from Puresyn Inc. (Malvern, PA). Infinity™ triglyceride reagents were from Thermo DMA (Louisville, CO). Resveratrol and splitomicin were obtained from Calbiochem, nicotinamide was from Sigma, and STO-609 (CaMKK inhibitor) was from Tocris Bioscience (Ellisville, MO). S17834, a synthetic polyphenol, was previously described (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar) and was provided by the Institut de Recherches Servier (Suresnes, France). Rabbit polyclonal phospho-Thr172 AMPKα, phospho-Ser428 LKB1 antibodies, total AMPKα and ACC antibodies were purchased from Cell Signaling Technology (Beverly, MA). Rabbit polyclonal phospho-Ser79 ACC1 (Ser221 ACC2) antibody and Sir2 antibody were obtained from Upstate Biotechnology, Inc. (Lake Placid, NY). Rabbit polyclonal AMPKα1 or -α2 isoform antibodies were from Bethyl Laboratories Inc. (Montgomery, TX). Rabbit polyclonal anti-SIRT1 antibody (sc-15404), mouse monoclonal LKB1 antibody (sc-32245), and horseradish peroxidase-conjugated anti-mouse and anti-rabbit secondary antibodies were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Mouse monoclonal antibodies against FAS (catalog number 610962), CaMKK (catalog number 610544), and anti-Myc (9E10) antibody were from BD Biosciences. Mouse monoclonal anti-FLAG M2 antibody was from Sigma. Mouse monoclonal anti-β-actin antibody was from Abcam Inc. (Cambridge, MA). SIRT1 Deacetylase Activity Assays—The Fluor de Lys fluorescence assay for in vitro SIRT1 activity (24Howitz K.T. Bitterman K.J. Cohen H.Y. Lamming D.W. Lavu S. Wood J.G. Zipkin R.E. Chung P. Kisielewski A. Zhang L.L. Scherer B. Sinclair D.A. Nature. 2003; 425: 191-196Crossref PubMed Scopus (3249) Google Scholar) was performed by incubation with recombinant human SIRT1 and substrates, including a fluorogenic acetylated Lys382 p53 peptide (50 μm) and NAD (100 μm) at 37 °C for 30 min according to the BIOMOL manufacturer's instructions. Fluorescent intensity was measured using a Fluoroskan Ascent® microplate fluorometer (Thermo Electron Corp., Milford, MA). Negative controls included “No Enzyme” and “Time Zero” controls, in which Developer II solution plus 2 mm nicotinamide was added before mixing the substrates with or without the SIRT1 enzyme. SIRT1 activity was calculated with the corrected arbitrary fluorescence units of the tested compounds to “no enzyme” control and expressed as fluorescent units relative to the control. To rule out whether polyphenolic compounds possess autofluorescence or nicotinamide itself interferes with the fluorescent signal, the Developer II solution was incubated with the Fluor de Lys deacetylated standard or the tested compounds in the absence of SIRT1 enzyme or substrates. The deacetylated standard dose-dependently increased the fluorescent rate, whereas the tested compounds did not alter the fluorescent intensity, indicating the change in p53 deacetylation caused by these compounds depends on specific SIRT1 activity (data not shown). Cell Culture and Treatments—Human HepG2 hepatocytes, human embryonic kidney (HEK) 293 cells, and HeLa cells that lack LKB1 (American Type Culture Collection, Manassas, VA) were cultured in DMEM containing 10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin, and 5.5 mm d-glucose (normal glucose), as previously described (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 25Zang M.W. Waelde C.A. Xiang X.Q. Rana A. Wen R. Luo Z.J. J. Biol. Chem. 2001; 276: 25157-25165Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). To characterize the functional relevance of SIRT1 to AMPK signaling and lipid metabolism, high glucose-induced lipid accumulation in HepG2 hepatocytes model was studied (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 26Cianflone K. Dahan S. Monge J.C. Sniderman A.D. Arterioscler. Thromb. 1992; 12: 271-277Crossref PubMed Scopus (44) Google Scholar, 27Nakajima K. Yamauchi K. Shigematsu S. Ikeo S. Komatsu M. Aizawa T. Hashizume K. J. Biol. Chem. 2000; 275: 20880-20886Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar). Adenoviruses and Cell Infection—Adenoviral vectors encoding the wild type mouse SIRT1 (Ad-SIRT1) (28Alcendor R.R. Kirshenbaum L.A. Imai S. Vatner S.F. Sadoshima J. Circ. Res. 2004; 95: 971-980Crossref PubMed Scopus (284) Google Scholar) were a generous gift from Dr. Sadoshima (New Jersey Medical School, Newark, NJ). Adenoviral vectors encoding FLAG-tagged wild type mouse SIRT1 (Ad-FLAG-SIRT1), an inactive mutant of SIRT1 with a histidine 355 to alanine mutation (Ad-SIRT1H355A), and Ad-SIRT1 short hairpin RNA (shRNA) and Ad-control shRNA (15Gerhart-Hines Z. Rodgers J.T. Bare O. Kim C.L.S.H. Kim S.H. Mostoslavsky R. Alt F.W. Wu Z.D. Puigserver P. EMBO J. 2007; 26: 1913-1923Crossref PubMed Scopus (1054) Google Scholar, 17Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nature. 2005; 434: 113-118Crossref PubMed Scopus (2662) Google Scholar, 18Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 12861-12866Crossref PubMed Scopus (458) Google Scholar, 28Alcendor R.R. Kirshenbaum L.A. Imai S. Vatner S.F. Sadoshima J. Circ. Res. 2004; 95: 971-980Crossref PubMed Scopus (284) Google Scholar) were kindly provided by Drs. Puigserver and Rodgers (Harvard Medical School, Boston, MA). Adenoviral vector expressing FLAG-tagged wild type LKB1 (Ad-FLAG-LKB1) was kindly provided by Dr. Walsh (Boston University School of Medicine, Boston, MA). Adenoviral vectors encoding green fluorescent protein (GFP) and a Myc-tagged dominant-negative mutant of AMPKα2 (Ad-DN-AMPK, AMPKα K45R) were described elsewhere (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). The replication-deficient adenoviruses were amplified in HEK293 cells and purified by Adenopure™ kits. Cells were infected with adenoviruses for 36–48 h prior to the experiments as described elsewhere (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). Lentivirus-mediated SIRT1 shRNA—Lentivirus expressing short hairpin RNA (shRNA) for human SIRT1 was generated as previously described (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 25Zang M.W. Waelde C.A. Xiang X.Q. Rana A. Wen R. Luo Z.J. J. Biol. Chem. 2001; 276: 25157-25165Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar, 29Zang M.W. Dong M.Q. Pinon D.I. Ding X.Q. Hadac E.M. Li Z.J. Lybrand T.P. Miller L.J. Mol. Pharmacol. 2003; 63: 993-1001Crossref PubMed Scopus (36) Google Scholar, 30Liao W. Nguyen M.T.A. Imamura T. Singer O. Verma I.M. Olefsky J.M. Endocrinology. 2006; 147: 2245-2252Crossref PubMed Scopus (54) Google Scholar). For knockdown of human SIRT1, the sequence GTATTGCTGAACAGATGGAA was chosen for the shRNA target. The expression cassette was created by tandem PCR with human U6 promoter as a template using CACCGCGCGCCAAGGTCGGGCA for forward primer and CTACACAAACTCCAcCTGTTCAGCAATACGGTGTTTCGTCC as the first reverse primer and CCAAAAAAGTATTGCTGAACAGATGGAACTACACAAACTC as the second reverse primer. The produced expression cassette was inserted into a directional pENTR/D-topo vector (Invitrogen) and then transferred to shRNA expressing lentivirus vector pDSL_hpUGIP (ATCC) by LR-clonase (Invitrogen). Recombinant lentiviruses were produced by co-infection into HEK293T cells with the lentivirus plasmid and three other helper vectors, pLP-1, pLP-2, and pVSVG (Invitrogen), using the calcium phosphate method. Lentiviral supernatant was harvested at 72 h postinfection and filtered through a 0.45-μm membrane. HepG2 cells were infected with fresh lentivirus expressing either control shRNA or SIRT1 shRNA in DMEM containing 8 μg/ml Polybrene (Sigma) for 24 h and cultured for an additional 72 h. The cells were selected for puromycin resistance (0.6 μg/ml, 7 days). Immunoblot Analysis—Immunoblotting of cell lysates was carried out according to our previous experimental procedure (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 25Zang M.W. Waelde C.A. Xiang X.Q. Rana A. Wen R. Luo Z.J. J. Biol. Chem. 2001; 276: 25157-25165Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar, 31Zang M. Hayne C. Luo Z. J. Biol. Chem. 2002; 277: 4395-4405Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar). The phosphorylation of LKB1, AMPK, and ACC was analyzed by immunoblots with antibodies against phospho-Ser428 LKB1, phospho-Thr172 AMPK, and phospho-Ser79 ACC1 (Ser221 ACC2), which are specific AMPK phosphorylation sites, as well as total LKB, AMPKα1 or -α2, or ACC as loading controls. In some cases, we used AMPKα2 as a loading control because our previous studies showed similar expression levels of endogenous AMPKα1 or -α2 protein in HepG2 cells and in the mouse livers (9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). The levels of phosphorylation were quantified by scanning densitometry using a model GS-700 imaging densitometer (Bio-Rad), normalized to the levels of total protein and expressed as relative phosphorylation to the basal or control level. In some cases, two bands of phosphorylated and total ACC were detected in HepG2 cells and in the mouse livers, which was also observed by other studies (32Lee Y. Yu X. Gonzales F. Mangelsdorf D.J. Wang M.Y. Richardson C. Witters L.A. Unger R.H. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 11848-11853Crossref PubMed Scopus (160) Google Scholar, 33Mao J. Demayo F.J. Li H. Abu-Elheiga L. Gu Z. Shaikenov T.E. Kordari P. Chirala S.S. Heird W.C. Wakil S.J. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 8552-8557Crossref PubMed Scopus (232) Google Scholar), and phosphorylation intensity of ACC was expressed as the ratio of the sum of the two bands of phosphorylated ACC to the sum of the two bands of endogenous ACC. In addition, expression of FAS (∼270 kDa) was assessed by immunoblots with FAS antibody, and its levels were normalized to those of β-actin and presented as the -fold change relative to the control. Measurement of Hepatocellular Triglyceride Content—Intracellular triglyceride contents were measured in HepG2 cell lysates, as previously described (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar, 34Picard F. Kurtev M. Chung N. Topark-Ngarm A. Senawong T. Machado D.O. Leid M. McBurney M.W. Guarente L. Nature. 2004; 429: 771-776Crossref PubMed Scopus (1710) Google Scholar, 35Wang Y.X. Lee C.H. Tiep S. Yu R.T. Ham J. Kang H. Evans R.M. Cell. 2003; 113: 159-170Abstract Full Text Full Text PDF PubMed Scopus (1157) Google Scholar). To assay, 30 μl of triglyceride standard or cleared cell supernatant was added to a 96-well flat bottom polystyrene plate, and 300 μl of Infinity triglyceride reagent was then added to the microplate. After the plate was incubated for 5 min, the optical density was read at 520 nm with a SPECTRAmax340 Microplate Spectrophotometer (Molecular Devices Corp.). Intracellular triglyceride levels were normalized to protein concentrations and expressed as μg of lipid/mg of protein (8Zang M.W. Zuccollo A. Hou X.Y. Nagata D. Walsh K. Herscovitz H. Brecher P. Ruderman N.B. Cohen R.A. J. Biol. Chem. 2004; 279: 47898-47905Abstract Full Text Full Text PDF PubMed Scopus (400) Google Scholar, 9Zang M.W. Xu S.Q. Maitland-Toolan K.A. Zuccollo A. Hou X.Y. Jiang B.B. Wierzbicki M. Verbeuren T.J. Cohen R.A. Diabetes. 2006; 55: 2180-2191Crossref PubMed Scopus (591) Google Scholar). In Vivo Adenoviral Gene Transfer—All of the animal experiments were performed according to the guidelines for the Care and Use of Laboratory Animals of Boston University. Male C57BL/6 mice at 10 weeks of age received standard mouse