AA
Alexander Auch
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
11,646
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome sequence-based species delimitation with confidence intervals and improved distance functions

Jan Meier‐Kolthoff et al.Feb 21, 2013
Abstract Background For the last 25 years species delimitation in prokaryotes ( Archaea and Bacteria ) was to a large extent based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing time has come to directly use the now available and easy to generate genome sequences for delimitation of species. (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the Prokaryotic species concept. Results Correlation and regression analyses were used to determine the best-performing methods and the most influential parameters. was further enriched with a set of new features such as confidence intervals for intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional family of distance functions. As in previous analyses, obtained the highest agreement with wet-lab DDH among all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling showed marked differences between the underlying distance functions. Conclusions Despite the high accuracy of -based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological advancements, easily accessible through the web service at http://ggdc.dsmz.de , are crucial steps towards a consistent and truly genome sequence-based classification of microorganisms.
0
Citation5,547
0
Save
0

MEGAN analysis of metagenomic data

Daniel Huson et al.Jan 25, 2007
Metagenomics is the study of the genomic content of a sample of organisms obtained from a common habitat using targeted or random sequencing. Goals include understanding the extent and role of microbial diversity. The taxonomical content of such a sample is usually estimated by comparison against sequence databases of known sequences. Most published studies use the analysis of paired-end reads, complete sequences of environmental fosmid and BAC clones, or environmental assemblies. Emerging sequencing-by-synthesis technologies with very high throughput are paving the way to low-cost random “shotgun” approaches. This paper introduces MEGAN, a new computer program that allows laptop analysis of large metagenomic data sets. In a preprocessing step, the set of DNA sequences is compared against databases of known sequences using BLAST or another comparison tool. MEGAN is then used to compute and explore the taxonomical content of the data set, employing the NCBI taxonomy to summarize and order the results. A simple lowest common ancestor algorithm assigns reads to taxa such that the taxonomical level of the assigned taxon reflects the level of conservation of the sequence. The software allows large data sets to be dissected without the need for assembly or the targeting of specific phylogenetic markers. It provides graphical and statistical output for comparing different data sets. The approach is applied to several data sets, including the Sargasso Sea data set, a recently published metagenomic data set sampled from a mammoth bone, and several complete microbial genomes. Also, simulations that evaluate the performance of the approach for different read lengths are presented.
0
Citation3,073
0
Save
0

Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison

Alexander Auch et al.Jan 28, 2010
The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.
0
Citation1,457
0
Save
0

Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs

Alexander Auch et al.Jan 28, 2010
DNA-DNA hybridization (DDH) is a widely applied wet-lab technique to obtain an estimate of the overall similarity between the genomes of two organisms. To base the species concept for prokaryotes ultimately on DDH was chosen by microbiologists as a pragmatic approach for deciding about the recognition of novel species, but also allowed a relatively high degree of standardization compared to other areas of taxonomy. However, DDH is tedious and error-prone and first and foremost cannot be used to incrementally establish a comparative database. Recent studies have shown that in-silico methods for the comparison of genome sequences can be used to replace DDH. Considering the ongoing rapid technological progress of sequencing methods, genome-based prokaryote taxonomy is coming into reach. However, calculating distances between genomes is dependent on multiple choices for software and program settings. We here provide an overview over the modifications that can be applied to distance methods based in high-scoring segment pairs (HSPs) or maximally unique matches (MUMs) and that need to be documented. General recommendations on determining HSPs using BLAST or other algorithms are also provided. As a reference implementation, we introduce the GGDC web server (http://ggdc.gbdp.org).
0
Citation528
0
Save
0

MetaSim—A Sequencing Simulator for Genomics and Metagenomics

Daniel Richter et al.Oct 7, 2008
The new research field of metagenomics is providing exciting insights into various, previously unclassified ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in public databases. There is great need for specialized software solutions and statistical methods for dealing with complex metagenome data sets.To facilitate the development and improvement of metagenomic tools and the planning of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a number of different sequencing technologies. A population sampler optionally produces evolved sequences based on source genomes and a given evolutionary tree.MetaSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software.
0
Citation450
0
Save