BL
Brian Luk
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(100% Open Access)
Cited by:
7,350
h-index:
30
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nanoparticle biointerfacing by platelet membrane cloaking

Che‐Ming Hu et al.Sep 16, 2015
The authors report a new biomimetic nanodelivery platform in which polymeric nanoparticles enclosed in the plasma membrane of human platelets are used for disease-relevant targeting, and the therapeutic potential of the concept is demonstrated in animal models of coronary restenosis and systemic bacterial infection. The properties of blood platelets — small discoid cells that carry out a broad range of functions related to haemostasis — marks them out as prime candidates to form the basis of drug delivery systems. These authors report a new nanoparticle-based delivery platform, in which polymeric nanoparticles are enclosed in the plasma membrane of human platelets. They demonstrate the use of these platelet-membrane cloaked nanoparticles for antibiotic delivery in murine models for cardiovascular disease and systemic bacterial infection. Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1,2,3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4,5,6,7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
0

A biomimetic nanosponge that absorbs pore-forming toxins

Che‐Ming Hu et al.Apr 14, 2013
Detoxification treatments such as toxin-targeted anti-virulence therapy1,2 offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera3, monoclonal antibodies4, small-molecule inhibitors5,6 and molecularly imprinted polymers7 act by targeting the molecular structures of toxins, customized treatments are required for different diseases. Here, we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-haemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins. A polymeric nanoparticle wrapped in natural membranes of red blood cells can absorb certain toxins and divert them from their cellular targets, offering a biologically inspired detoxification platform.
0
Paper
Citation647
0
Save
0

Erythrocyte–Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization

Diana Dehaini et al.Feb 15, 2017
Cell‐membrane‐coated nanoparticles have recently been studied extensively for their biological compatibility, retention of cellular properties, and adaptability to a variety of therapeutic and imaging applications. This class of nanoparticles, which has been fabricated with a variety of cell membrane coatings, including those derived from red blood cells (RBCs), platelets, white blood cells, cancer cells, and bacteria, exhibit properties that are characteristic of the source cell. In this study, a new type of biological coating is created by fusing membrane material from two different cells, providing a facile method for further enhancing nanoparticle functionality. As a proof of concept, the development of dual‐membrane‐coated nanoparticles from the fused RBC membrane and platelet membrane is demonstrated. The resulting particles, termed RBC–platelet hybrid membrane‐coated nanoparticles ([RBC‐P]NPs), are thoroughly characterized, and it is shown that they carry properties of both source cells. Further, the [RBC‐P]NP platform exhibits long circulation and suitability for further in vivo exploration. The reported strategy opens the door for the creation of biocompatible, custom‐tailored biomimetic nanoparticles with varying hybrid functionalities, which may be used to overcome the limitations of current nanoparticle‐based therapeutic and imaging platforms.
0

Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity

Ashley Kroll et al.Nov 2, 2017
Anticancer vaccines train the body's own immune system to recognize and eliminate malignant cells based on differential antigen expression. While conceptually attractive, clinical efficacy is lacking given several key challenges stemming from the similarities between cancerous and healthy tissue. Ideally, an effective vaccine formulation would deliver multiple tumor antigens in a fashion that potently stimulates endogenous immune responses against those antigens. Here, it is reported on the fabrication of a biomimetic, nanoparticulate anticancer vaccine that is capable of delivering autologously derived tumor antigen material together with a highly immunostimulatory adjuvant. The two major components, tumor antigens and adjuvant, are presented concurrently in a fashion that maximizes their ability to promote effective antigen presentation and activation of downstream immune processes. Ultimately, it is demonstrated that the formulation can elicit potent antitumor immune responses in vivo. When combined with additional immunotherapies such as checkpoint blockades, the nanovaccine demonstrates substantial therapeutic effect. Overall, the work represents the rational application of nanotechnology for immunoengineering and can provide a blueprint for the future development of personalized, autologous anticancer vaccines with broad applicability.
0
Citation435
0
Save
0

Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles

Weiwei Gao et al.Jan 23, 2015
Synthetic nanoparticles coated with cellular membranes have been increasingly explored to harness natural cell functions toward the development of novel therapeutic strategies. Herein, we report on a unique bacterial membrane-coated nanoparticle system as a new and exciting antibacterial vaccine. Using Escherichia coli as a model pathogen, we collect bacterial outer membrane vesicles (OMVs) and successfully coat them onto small gold nanoparticles (AuNPs) with a diameter of 30 nm. The resulting bacterial membrane-coated AuNPs (BM-AuNPs) show markedly enhanced stability in biological buffer solutions. When injected subcutaneously, the BM-AuNPs induce rapid activation and maturation of dendritic cells in the lymph nodes of the vaccinated mice. In addition, vaccination with BM-AuNPs generates antibody responses that are durable and of higher avidity than those elicited by OMVs only. The BM-AuNPs also induce an elevated production of interferon gamma (INFγ) and interleukin-17 (IL-17), but not interleukin-4 (IL-4), indicating its capability of generating strong Th1 and Th17 biased cell responses against the source bacteria. These observed results demonstrate that using natural bacterial membranes to coat synthetic nanoparticles holds great promise for designing effective antibacterial vaccines.
0
Citation412
0
Save
0

Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles

Brian Luk et al.Dec 20, 2013
The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane–particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices.
0
Paper
Citation317
0
Save
Load More