CC
Carl Cotman
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
5,253
h-index:
57
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state

Christian Pike et al.Apr 1, 1993
The progressive neurodegeneration of Alzheimer's disease has been hypothesized to be mediated, at least in part, by beta-amyloid protein. A relationship between the aggregation state of beta-amyloid protein and its ability to promote degeneration in vitro has been previously suggested. To evaluate this hypothesis and to define a structure-activity relationship for beta-amyloid, aggregation properties of an overlapping series of synthetic beta-amyloid peptides (beta APs) were investigated and compared with beta AP neurotoxic properties in vitro. Using light microscopy, electrophoresis, and ultracentrifugation assays, we found that few beta APs assembled into aggregates immediately after solubilization, but that over time peptides containing the highly hydrophobic beta 29-35 region formed stable aggregations. In short-term neuronal cultures, toxicity was associated specifically with those beta APs that also exhibited significant aggregation. Further, upon the partial reversal of beta 1-42 aggregation, a concomitant loss of toxicity was observed. A synthetic peptide derived from a different amyloidogenic protein, islet amyloid polypeptide, exhibited aggregation but not toxicity, suggesting that beta AP-induced neurotoxicity in vitro is not a nonspecific reaction to aggregated protein. The correlation between beta AP aggregation and neurotoxicity was also observed in long-term neuronal cultures but not in astrocyte cultures. These data are consistent with the hypothesis that beta-amyloid protein contributes to neurodegeneration in Alzheimer's disease.
0

Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain

Daniel Monaghan et al.Nov 1, 1985
N-methyl-D-aspartate (NMDA) is an acidic amino acid which depolarizes neurons by selectively interacting with a distinct class of excitatory amino acid receptor. Recent evidence has indicated that this receptor is a neurotransmitter receptor in the spinal cord, cerebral cortex, and hippocampus for which the endogenous ligand is likely to be L-glutamate or a structurally related compound. Using quantitative autoradiography, we have studied the anatomical distribution of the class of L-[3H]glutamate-binding sites displaced by NMDA, which appear to correspond to NMDA receptors. The CA1 region of the hippocampus contains the highest density of sites. In general, telencephalic regions have high levels of binding sites. The cerebral cortex shows significant density variations among the differing layers and regions, with the highest levels found in the frontal cortex layers I to III. Within the basal ganglia, the highest levels are found in the nucleus accumbens, intermediate levels are found in the caudate/putamen, and very low levels are found in the globus pallidus. Thalamic regions have moderate levels with variations among differing regions. Midbrain and brainstem have low levels of binding sites, but within these regions there are structures exhibiting higher levels, e.g., the nucleus of the solitary tract and the inferior olive. The distribution of NMDA sites is consistent with most, but not all, of the regions previously proposed to use glutamate as an excitatory transmitter. Thus, the distribution of NMDA-sensitive L-[3H]glutamate-binding sites suggests that the NMDA receptor represents a major, distinct subset of excitatory amino acid receptors and indicates regions in which neurotransmission may be mediated or modulated by this receptor.
0

Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine.

Daniel Monaghan et al.Dec 1, 1988
The N-methyl-D-aspartate (NMDA) receptor, a subtype of excitatory amino acid receptor, mediates synaptic responses in many regions of the central nervous system. This receptor plays a critical role in the mechanisms of both synaptic plasticity and excitotoxicity. Although these receptors were generally thought to be a single homogeneous receptor population, we report observations indicating that two anatomically distinct forms of the NMDA-receptor complex exist. (i) The distribution of NMDA receptors, as labeled by the NMDA agonist L-[3H]glutamate, differs from that obtained with the radiolabeled antagonist 3H-labeled 3-[(+/-)2-carboxypiperazine-4-yl]propyl-1-phosphonic acid [( 3H]CPP). Relative to L-[3H]glutamate, [3H]CPP binding is low in the striatum and septum and high in the thalamus and inner cerebral cortex. (ii) NMDA antagonists are relatively more potent than agonists at displacing L-[3H]glutamate binding in the thalamus and cerebral cortex; agonists are relatively more potent in the striatum and cerebellum. (iii) Glycine, which potentiates NMDA-receptor responses to glutamate, causes a greater percentage increase in L-[3H]glutamate binding to NMDA receptors in the thalamus and cerebral cortex than in the striatum, septum, and cerebellum. Radiolabeled NMDA-antagonist binding, in contrast, is inhibited by glycine. Thus, as observed for gamma-aminobutyric acid type A receptors, NMDA receptors have an agonist-preferring binding-site population and an antagonist-preferring binding site population. These may represent two distinct receptors and/or two interconverting forms. It could be of significant clinical importance if these two sites differ in their response to NMDA.