Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell–cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control. The red flour beetle Tribolium castaneum is a common pest: a type of 'bran bug', it targets cereal products, including grain, flour and rice bran. It is also a commonly used laboratory model, combining the ease of systematic RNA interference experiments such as those used with the nematode worm C. elegans with a biology that is more representative of most insects than even Drosophila. This weeks sees the publication by the Tribolium Genome Sequencing Consortium of the genomic sequence of T. castaneum. This is the first beetle genome to be published, and it will be a valuable resource for insect development studies and pest biology. The beetle Tribolium castaneum is a commonly used laboratory model, combining the ease of systematic RNAi experiments like those in Caenorhabditis elegans, with biology that is more representative of most insects than Drosophila melanogaster. A large consortium has sequenced and analysed the genome of the red flour beetle, creating a resource for biologists everywhere.