DY
Diana Yu
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
3,288
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Modelling schizophrenia using human induced pluripotent stem cells

Kristen Brennand et al.Apr 12, 2011
Many cellular and molecular phenomena have been described in neurons of schizophrenic patients, mostly based on post-mortem data, but there is still no clear understanding of mechanisms underlying the disease. Gage and colleagues now demonstrate the feasibility of generating a human cell-based model of schizophrenia. Fibroblasts from patients with schizophrenia were reprogrammed into induced pluripotent stem cells and subsequently differentiated into neurons. These neurons displayed a number of schizophrenia-associated phenotypes, including reduced connectivity and altered gene expression, some of which could be rescued by an antipsychotic. Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%1. Although post-mortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue2 and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD3, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (Supplementary Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cyclic AMP and WNT signalling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood4,5,6. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder.
0
Citation1,315
0
Save
0

Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder

Jérôme Mertens et al.Oct 28, 2015
A neuronal model of bipolar disorder based on induced pluripotent stem cell (iPSC) technology finds hyperactive action-potential firing and differential responsiveness to lithium in iPSC-derived neurons from patients with bipolar disorder. Lithium is widely used as a mood stabilizer in bipolar disorder, but not all patients respond favourably. In this paper, Fred Gage and colleagues generated hippocampal dentate gyrus-like neurons from induced pluripotent stem cells (iPSCs) obtained from lithium-responsive and lithium-non-responsive patients with bipolar disorder in order to assess differences in cellular phenotypes. They found mitochondrial abnormalities and hyperexcitability in young iPSC-derived neurons from bipolar disorder patients. Hyperexcitability was reversed by lithium treatment only in neurons derived from lithium-responsive individuals. This suggests that hyperexcitability may be an early endophenotype of bipolar disorder and that iPSC models may be useful for the development of new therapies. Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide1. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity2. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models3, such as reduced glial cell number in the prefrontal cortex of patients4, upregulated activities of the protein kinase A and C pathways5,6,7 and changes in neurotransmission8,9,10,11. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
0
Citation495
0
Save