MT
M. Taşgetiren
Author with expertise in Scheduling Problems in Manufacturing Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(11% Open Access)
Cited by:
3,919
h-index:
39
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem

Quan-Ke Pan et al.Jan 5, 2010
In this paper, a discrete artificial bee colony (DABC) algorithm is proposed to solve the lot-streaming flow shop scheduling problem with the criterion of total weighted earliness and tardiness penalties under both the idling and no-idling cases. Unlike the original ABC algorithm, the proposed DABC algorithm represents a food source as a discrete job permutation and applies discrete operators to generate new neighboring food sources for the employed bees, onlookers and scouts. An efficient initialization scheme, which is based on the earliest due date (EDD), the smallest slack time on the last machine (LSL) and the smallest overall slack time (OSL) rules, is presented to construct the initial population with certain quality and diversity. In addition, a self adaptive strategy for generating neighboring food sources based on insert and swap operators is developed to enable the DABC algorithm to work on discrete/combinatorial spaces. Furthermore, a simple but effective local search approach is embedded in the proposed DABC algorithm to enhance the local intensification capability. Through the analysis of experimental results, the highly effective performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.
0

A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem

M. Taşgetiren et al.Feb 16, 2006
In this paper, a particle swarm optimization algorithm (PSO) is presented to solve the permutation flowshop sequencing problem (PFSP) with the objectives of minimizing makespan and the total flowtime of jobs. For this purpose, a heuristic rule called the smallest position value (SPV) borrowed from the random key representation of Bean [J.C. Bean, Genetic algorithm and random keys for sequencing and optimization, ORSA Journal of Computing 6(2) (1994) 154–160] was developed to enable the continuous particle swarm optimization algorithm to be applied to all classes of sequencing problems. In addition, a very efficient local search, called variable neighborhood search (VNS), was embedded in the PSO algorithm to solve the well known benchmark suites in the literature. The PSO algorithm was applied to both the 90 benchmark instances provided by Taillard [E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Research, 64 (1993) 278–285], and the 14,000 random, narrow random and structured benchmark instances provided by Watson et al. [J.P. Watson, L. Barbulescu, L.D. Whitley, A.E. Howe, Contrasting structured and random permutation flowshop scheduling problems: Search space topology and algorithm performance, ORSA Journal of Computing 14(2) (2002) 98–123]. For makespan criterion, the solution quality was evaluated according to the best known solutions provided either by Taillard, or Watson et al. The total flowtime criterion was evaluated with the best known solutions provided by Liu and Reeves [J. Liu, C.R. Reeves, Constructive and composite heuristic solutions to the P∥∑Ci scheduling problem, European Journal of Operational Research 132 (2001) 439–452], and Rajendran and Ziegler [C. Rajendran, H. Ziegler, Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs, European Journal of Operational Research, 155(2) (2004) 426–438]. For the total flowtime criterion, 57 out of the 90 best known solutions reported by Liu and Reeves, and Rajendran and Ziegler were improved whereas for the makespan criterion, 195 out of the 800 best known solutions for the random and narrow random problems reported by Watson et al. were improved by the VNS version of the PSO algorithm.
0

A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem

Quan-Ke Pan et al.Apr 3, 2007
In this paper, a discrete particle swarm optimization (DPSO) algorithm is presented to solve the no-wait flowshop scheduling problem with both makespan and total flowtime criteria. The main contribution of this study is due to the fact that particles are represented as discrete job permutations and a new position update method is developed based on the discrete domain. In addition, the DPSO algorithm is hybridized with the variable neighborhood descent (VND) algorithm to further improve the solution quality. Several speed-up methods are proposed for both the swap and insert neighborhood structures. The DPSO algorithm is applied to both 110 benchmark instances of Taillard [Benchmarks for basic scheduling problems. European Journal of Operational Research 1993;64:278–85] by treating them as the no-wait flowshop problem instances with the total flowtime criterion, and to 31 benchmark instances provided by Carlier [Ordonnancements a contraintes disjonctives. RAIRO Recherche operationelle 1978;12:333–51], Heller [Some numerical experiments for an M×J flow shop and its decision-theoretical aspects. Operations Research 1960;8:178–84], and Revees [A genetic algorithm for flowshop sequencing. Computers and Operations Research 1995;22:5–13] for the makespan criterion. For the makespan criterion, the solution quality is evaluated according to the reference makespans generated by Rajendran [A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Research Society 1994;45:472–8] whereas for the total flowtime criterion, it is evaluated with the optimal solutions, lower bounds and best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14]. The computational results show that the DPSO algorithm generated either competitive or better results than those reported in the literature. Ultimately, 74 out of 80 best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14] were improved by the VND version of the DPSO algorithm.
0

A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities

Junqing Li et al.Aug 19, 2013
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.
0
Citation255
0
Save
0

Q-learning Guided Algorithms for Bi-Criteria Minimization of Total Flow Time and Makespan in No-Wait Permutation Flowshops

Damla Yüksel et al.May 28, 2024
Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct the selection of actions, thus preventing the necessity for a random exploration in the iterative process of the metaheuristics. In this study, we provide Q-learning guided algorithms for the Bi-Criteria No-Wait Flowshop Scheduling Problem (NWFSP). The problem is treated as a bi-criteria combinatorial optimization problem where total flow time and makespan are optimized simultaneously. Firstly, a deterministic mixed-integer linear programming (MILP) model is provided. Then, Q-learning guided algorithms are developed: Bi-Criteria Iterated Greedy Algorithm with Q-Learning (BC-IGQL). Bi-criteria block Insertion Heuristic Algorithm with Q-Learning (BC-BIHQL). Moreover, the performance of the proposed Q-learning guided algorithms is compared over a collection of Bi-Criteria Genetic Local Search Algorithms (BC-GLS), Bi-Criteria Iterated Greedy Algorithm (BC-IG), Bi-Criteria Iterated Greedy Algorithm with a Local Search (BC-IGALL) and Bi-Criteria Variable Block Insertion Heuristic Algorithm (BC-VBIH). The complete computational experiment, performed on 480 problem instances of Vallada et al. (2015), which is known as the VRF benchmark set, indicates that the BC-BIHQL and the BC-IGQL algorithms outperform the BC-GLS, BC-IG, BC-IGALL, and BC-VBIH algorithms in comparative performance metrics. More specifically, the proposed BC-BIHQL and BC-IGQL algorithms can yield more non-dominated bi-criteria solutions with the most substantial competitiveness than the remaining algorithms. At the same time, both are competitive with each other on the benchmark problems. Moreover, the BC-IGQL algorithm dominates almost 97% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets. Similarly, The BC-BIHQL algorithm dominates almost 98% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets, respectively. This means that, among all the features that have been compared, the Q-learning-guided algorithms demonstrate the highest level of competitiveness. The outcomes of this study encourage us to discover many more bi-criteria NWFSPs to reveal the trade-off between other conflicting objectives, such as makespan & the number of early jobs, to overcome various industries' problems.