RF
R. Frey
Author with expertise in Aerosols' Impact on Climate and Hydrological Cycle
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
4,748
h-index:
23
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The MODIS cloud products: algorithms and examples from terra

Steven Platnick et al.Feb 1, 2003
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of five instruments aboard the Terra Earth Observing System (EOS) platform launched in December 1999. After achieving final orbit, MODIS began Earth observations in late February 2000 and has been acquiring data since that time. The instrument is also being flown on the Aqua spacecraft, launched in May 2002. A comprehensive set of remote sensing algorithms for cloud detection and the retrieval of cloud physical and optical properties have been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir. An example of each Level-2 cloud product from a common data granule (5 min of data) off the coast of South America will be discussed. Future efforts will also be mentioned. Relevant points related to the global gridded statistics products (Level-3) are highlighted though additional details are given in an accompanying paper in this issue.
0
Paper
Citation1,815
0
Save
0

Discriminating clear sky from clouds with MODIS

Steven Ackerman et al.Dec 1, 1998
The MODIS cloud mask uses several cloud detection tests to indicate a level of confidence that the MODIS is observing clear skies. It will be produced globally at single‐pixel resolution; the algorithm uses as many as 14 of the MODIS 36 spectral bands to maximize reliable cloud detection and to mitigate past difficulties experienced by sensors with coarser spatial resolution or fewer spectral bands. The MODIS cloud mask is ancillary input to MODIS land, ocean, and atmosphere science algorithms to suggest processing options. The MODIS cloud mask algorithm will operate in near real time in a limited computer processing and storage facility with simple easy‐to‐follow algorithm paths. The MODIS cloud mask algorithm identifies several conceptual domains according to surface type and solar illumination, including land, water, snow/ice, desert, and coast for both day and night. Once a pixel has been assigned to a particular domain (defining an algorithm path), a series of threshold tests attempts to detect the presence of clouds in the instrument field of view. Each cloud detection test returns a confidence level that the pixel is clear ranging in value from 1 (high) to zero (low). There are several types of tests, where detection of different cloud conditions relies on different tests. Tests capable of detecting similar cloud conditions are grouped together. While these groups are arranged so that independence between them is maximized, few, if any, spectral tests are completely independent. The minimum confidence from all tests within a group is taken to be representative of that group. These confidences indicate absence of particular cloud types. The product of all the group confidences is used to determine the confidence of finding clear‐sky conditions. This paper outlines the MODIS cloud masking algorithm. While no present sensor has all of the spectral bands necessary for testing the complete MODIS cloud mask, initial validation of some of the individual cloud tests is presented using existing remote sensing data sets.
0
Paper
Citation1,209
0
Save
0

Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5

R. Frey et al.Jan 30, 2008
Abstract Significant improvements have been made to the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask (MOD35 and MYD35) for Collection 5 reprocessing and forward stream data production. Most of the modifications are realized for nighttime scenes where polar and oceanic regions will see marked improvement. For polar night scenes, two new spectral tests using the 7.2-μm water vapor absorption band have been added as well as updates to the 3.9–12- and 11–12-μm cloud tests. More non-MODIS ancillary input data have been added. Land and sea surface temperature maps provide crucial information for mid- and low-level cloud detection and lessen dependence on ocean brightness temperature variability tests. Sun-glint areas are also improved by use of sea surface temperatures to aid in resolving observations with conflicting cloud versus clear-sky signals, where visible and near-infrared (NIR) reflectances are high, but infrared brightness temperatures are relatively warm. Day and night Arctic cloud frequency results are compared to those created by the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder-Extended (APP-X) algorithm. Day versus night sea surface temperatures derived from MODIS radiances and using only the MODIS cloud mask for cloud screening are contrasted. Frequencies of cloud from sun-glint regions are shown as a function of sun-glint angle to gain a sense of cloud mask quality in those regions. Continuing validation activities are described in Part II of this paper.
0
Paper
Citation424
0
Save
0

Cloud Detection with MODIS. Part II: Validation

Steven Ackerman et al.Jan 30, 2008
Abstract An assessment of the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask algorithm for Terra and Aqua satellites is presented. The MODIS cloud mask algorithm output is compared with lidar observations from ground [Arctic High-Spectral Resolution Lidar (AHSRL)], aircraft [Cloud Physics Lidar (CPL)], and satellite-borne [Geoscience Laser Altimeter System (GLAS)] platforms. The comparison with 3 yr of coincident observations of MODIS and combined radar and lidar cloud product from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site in Lamont, Oklahoma, indicates that the MODIS algorithm agrees with the lidar about 85% of the time. A comparison with the CPL and AHSRL indicates that the optical depth limitation of the MODIS cloud mask is approximately 0.4. While MODIS algorithm flags scenes with a cloud optical depth of 0.4 as cloudy, approximately 90% of the mislabeled scenes have optical depths less than 0.4. A comparison with the GLAS cloud dataset indicates that cloud detection in polar regions at night remains challenging with the passive infrared imager approach. In anticipation of comparisons with other satellite instruments, the sensitivity of the cloud mask algorithm to instrument characteristics (e.g., instantaneous field of view and viewing geometry) and thresholds is demonstrated. As expected, cloud amount generally increases with scan angle and instantaneous field of view (IFOV). Nadir sampling represents zonal monthly mean cloud amounts but can have large differences for regional studies when compared to full-swath-width analysis.
0
Paper
Citation422
0
Save
0

MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results

W. Menzel et al.Apr 1, 2008
Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua platforms provides unique measurements for deriving global and regional cloud properties. MODIS has spectral coverage combined with spatial resolution in key atmospheric bands, which is not available on previous imagers and sounders. This increased spectral coverage/spatial resolution, along with improved onboard calibration, enhances the capability for global cloud property retrievals. MODIS operational cloud products are derived globally at spatial resolutions of 5 km (referred to as level-2 products) and are aggregated to a 1° equal-angle grid (referred to as level-3 product), available for daily, 8-day, and monthly time periods. The MODIS cloud algorithm produces cloud-top pressures that are found to be within 50 hPa of lidar determinations in single-layer cloud situations. In multilayer clouds, where the upper-layer cloud is semitransparent, the MODIS cloud pressure is representative of the radiative mean between the two cloud layers. In atmospheres prone to temperature inversions, the MODIS cloud algorithm places the cloud above the inversion and hence is as much as 200 hPa off its true location. The wealth of new information available from the MODIS operational cloud products offers the promise of improved cloud climatologies. This paper 1) describes the cloud-top pressure and amount algorithm that has evolved through collection 5 as experience has been gained with in-flight data from NASA Terra and Aqua platforms; 2) compares the MODIS cloud-top pressures, converted to cloud-top heights, with similar measurements from airborne and space-based lidars; and 3) introduces global maps of MODIS and High Resolution Infrared Sounder (HIRS) cloud-top products.
0
Paper
Citation310
0
Save
0

Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP

Robert Holz et al.Apr 27, 2008
A global 2‐month comparison is presented between the Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for both cloud detection and cloud top height (CTH) retrievals. Both CALIOP and MODIS are part of the NASA A‐Train constellation of satellites and provide continuous near‐coincident measurements that result in over 28 million cloud detection comparisons and over 5 million CTH comparisons for the months of August 2006 and February 2007. To facilitate the comparison, a computationally efficient and accurate collocation methodology is developed. With the collocated MODIS and CALIOP retrievals, nearly instantaneous comparisons are compiled regionally and globally. Globally, it is found that the MODIS 1‐km cloud mask and the CALIOP 1‐km averaged layer product agreement is 87% for cloudy conditions for both August 2006 and February 2007. For clear‐sky conditions the agreement is 85% (86%) for August (February). The best agreement is found for nonpolar daytime and the poorest agreement in the polar regions. Differences in cloud top heights depend strongly on cloud type. Globally, MODIS underestimates the CTH relative to CALIOP by 1.4 ± 2.9 km for both August 2006 and February 2007. This value of 1.4 km is obtained using the CALIOP 1 km layer products. When compared to the CALIOP 5‐km products, the differences increase to −2.6 ± 3.9 km as a result of CALIOP's increased sensitivity to optically thin cirrus. When only high clouds above 5 km are considered, the differences are found to be greater than 4 km with individual comparisons having differences larger than 10 km. These large differences (>10 km) represent approximately 16% of the nonpolar high cloud retrievals (>5 km). For high clouds it is found that MODIS retrieves a cloud top height for 90% of the clouds detected by the CALIOP 5‐km layer products. The large MODIS underestimates for optically thin cirrus occur for cases when MODIS reverts to a window brightness temperature retrieval instead of CO 2 slicing. A systematic bias is found for marine low‐level stratus clouds, with MODIS overestimating the CTH by over 1 km in dense marine stratocumulus regions. The cause of the bias was identified in the MODIS Collection 5 algorithm; an application of a modified algorithm reduced this bias.
0
Paper
Citation293
0
Save