JW
Jihua Wang
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1,187
h-index:
37
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Improving prediction of secondary structure, local backbone angles and solvent accessible surface area of proteins by iterative deep learning

Rhys Heffernan et al.Jun 22, 2015
Abstract Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking.
0

Sixty-five years of the long march in protein secondary structure prediction: the final stretch?

Yuedong Yang et al.Nov 19, 2016
Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82-84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88-90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction.
0

Predicting functional long non-coding RNAs validated by low throughput experiments

Bailing Zhou et al.May 10, 2019
High-throughput techniques have uncovered hundreds and thousands of long non-coding RNAs (lncRNAs). Among them, only a small fraction has experimentally validated functions (EVlncRNAs) by low-throughput methods. What fraction of lncRNAs from high-throughput experiments (HTlncRNAs) is truly functional is an active subject of debate. Here, we developed the first method to distinguish EVlncRNAs from HTlncRNAs and mRNAs by using Support Vector Machines and found that EVlncRNAs can be well separated from HTlncRNAs and mRNAs with 0.6 for Matthews correlation coefficient, 64% for sensitivity, and 81% for precision for the independent human test set. The most discriminative features are related to sequence conservations at RNA (for separating from HTlncRNAs) and protein (for separating from mRNA) levels. The method is found to be robust as the human-RNA-trained model is applicable to independent mouse RNAs with similar accuracy and to a lesser extent to plant RNAs. The method can recover newly discovered EVlncRNAs with high sensitivity. Its application to randomly selected 2000 human HTlncRNAs indicates that a large number of functional lncRNAs are waiting to be validated. The method is expected to speed up and reduce the cost of the discovery by prioritizing potentially functional lncRNAs prior to experimental validation. EVlncRNA-pred is available as a web server at http://biophy.dzu.edu.cn/lncrnapred/index.html. All datasets used in this study can be obtained from the same website.