BD
Bruno Dhuime
Author with expertise in Tectonic and Geochronological Evolution of Orogens
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
5,074
h-index:
33
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The generation and evolution of the continental crust

Chris Hawkesworth et al.Mar 1, 2010
The continental crust is the archive of the geological history of the Earth. Only 7% of the crust is older than 2.5 Ga, and yet significantly more crust was generated before 2.5 Ga than subsequently. Zircons offer robust records of the magmatic and crust-forming events preserved in the continental crust. They yield marked peaks of ages of crystallization and of crust formation. The latter might reflect periods of high rates of crust generation, and as such be due to magmatism associated with deep-seated mantle plumes. Alternatively the peaks are artefacts of preservation, they mark the times of supercontinent formation, and magmas generated in some tectonic settings may be preferentially preserved. There is increasing evidence that depletion of the upper mantle was in response to early planetary differentiation events. Arguments in favour of large volumes of continental crust before the end of the Archaean, and the thickness of felsic and mafic crust, therefore rely on thermal models for the progressively cooling Earth. They are consistent with recent estimates that the rates of crust generation and destruction along modern subduction zones are strikingly similar. The implication is that the present volume of continental crust was established 2–3 Ga ago.
0
Paper
Citation702
0
Save
0

The continental record and the generation of continental crust

Peter Cawood et al.Oct 31, 2012
Continental crust is the archive of Earth history. The spatial and temporal distribution of Earth’s record of rock units and events is heterogeneous; for example, ages of igneous crystallization, metamorphism, continental margins, mineralization, and seawater and atmospheric proxies are distributed about a series of peaks and troughs. This distribution reflects the different preservation potential of rocks generated in different tectonic settings, rather than fundamental pulses of activity, and the peaks of ages are linked to the timing of supercontinent assembly. The physio-chemical resilience of zircons and their derivation largely from felsic igneous rocks means that they are important indicators of the crustal record. Furthermore, detrital zircons, which sample a range of source rocks, provide a more representative record than direct analysis of grains in igneous rocks. Analysis of detrital zircons suggests that at least ∼60%–70% of the present volume of the continental crust had been generated by 3 Ga. Such estimates seek to take account of the extent to which the old crustal material is underrepresented in the sedimentary record, and they imply that there were greater volumes of continental crust in the Archean than might be inferred from the compositions of detrital zircons and sediments. The growth of continental crust was a continuous rather than an episodic process, but there was a marked decrease in the rate of crustal growth at ca. 3 Ga, which may have been linked to the onset of significant crustal recycling, probably through subduction at convergent plate margins. The Hadean and Early Archean continental record is poorly preserved and characterized by a bimodal TTG (tonalites, trondhjemites, and granodiorites) and greenstone association that differs from the younger record that can be more directly related to a plate-tectonic regime. The paucity of this early record has led to competing and equivocal models invoking plate-tectonic– and mantle-plume–dominated processes. The 60%–70% of the present volume of the continental crust estimated to have been present at 3 Ga contrasts markedly with the <10% of crust of that age apparently still preserved and requires ongoing destruction (recycling) of crust and subcontinental mantle lithosphere back into the mantle through processes such as subduction and delamination.
0
Paper
Citation579
0
Save
0

Geological archive of the onset of plate tectonics

Peter Cawood et al.Oct 1, 2018
Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
0
Paper
Citation377
0
Save
0

Earth's Continental Lithosphere Through Time

Chris Hawkesworth et al.May 31, 2017
The record of the continental lithosphere is patchy and incomplete; no known rock is older than 4.02 Ga, and less than 5% of the rocks preserved are older than 3 Ga. In addition, there is no recognizable mantle lithosphere from before 3 Ga. We infer that there was lithosphere before 3 Ga and that ∼3 Ga marks the stabilization of blocks of continental lithosphere that have since survived. This was linked to plate tectonics emerging as the dominant tectonic regime in response to thermal cooling, the development of a more rigid lithosphere, and the recycling of water, which may in turn have facilitated plate tectonics. A number of models, using different approaches, suggest that at 3 Ga the volume of continental crust was ∼70% of its present-day volume and that this may be a minimum value. The continental crust before 3 Ga was on average more mafic than that generated subsequently, and this pre-3 Ga mafic new crust had fractionated Lu/Hf and Sm/Nd ratios as inferred for the sources of tonalite-trondhjemite-granodiorite and later granites. The more intermediate composition of new crust generated since 3 Ga is indicated by its higher Rb/Sr ratios. This change in composition was associated with an increase in crustal thickness, which resulted in more emergent crust available for weathering and erosion. This in turn led to an increase in the Sr isotope ratios of seawater and in the drawdown of CO 2 . Since 3 Ga, the preserved record of the continental crust is marked by global cycles of peaks and troughs of U-Pb crystallization ages, with the peaks of ages appearing to match periods of supercontinent assembly. There is increasing evidence that the peaks of ages represent enhanced preservation of magmatic rocks in periods leading up to and including continental collision in the assembly of supercontinents. These are times of increased crustal growth because more of the crust that is generated is retained within the crust. The rates of generation of continental crust and mantle lithosphere may have remained relatively constant at least since 3 Ga, yet the rates of destruction of continental crust have changed with time. Only relatively small volumes of rock are preserved from before 3 Ga, and so it remains difficult to establish which of these are representative of global processes and the extent to which the rock record before 3 Ga is distorted by particular biases.
0
Paper
Citation200
0
Save
0

Rates of generation and growth of the continental crust

Chris Hawkesworth et al.Mar 11, 2018
Models for when and how the continental crust was formed are constrained by estimates in the rates of crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margins and mineralisation. For the most part these are global signatures, and the peaks of ages tend to be associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios of zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods of crustal thickening associated with compressional tectonics and the development of supercontinents. Magma types similar to those from recent within-plate and subduction related settings appear to have been generated in different areas at broadly similar times before ∼3.0 Ga. It can be difficult to put the results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust. The development of crustal growth models for the continental crust are discussed, and a number of models based on different data sets indicate that 65%–70% of the present volume of the continental crust was generated by 3 Ga. Such estimates may represent minimum values, but since ∼3 Ga there has been a reduction in the rates of growth of the continental crust. This reduction is linked to an increase in the rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates at which continental crust was generated. Plate tectonics results in both the generation of new crust and its destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ∼3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism by which new continental crust was generated.
0
Paper
Citation184
0
Save
Load More