PG
Pooran Gaur
Author with expertise in Genetics and Breeding of Cowpea
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
3,160
h-index:
63
/
i10-index:
153
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)

Rajeev Varshney et al.Dec 10, 2013
Analysis of phenotypic data for 20 drought tolerance traits in 1–7 seasons at 1–5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement. Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations—ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1–7 seasons at 1–5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed ( http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/ ). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as “QTL-hotspot”. This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.
0
Citation345
0
Save
0

Marker‐Assisted Backcrossing to Introgress Resistance to Fusarium Wilt Race 1 and Ascochyta Blight in C 214, an Elite Cultivar of Chickpea

Rajeev Varshney et al.Mar 1, 2014
Fusarium wilt (FW) and Ascochyta blight (AB) are two major constraints to chickpea (Cicer arietinum L.) production. Therefore, two parallel marker‐assisted backcrossing (MABC) programs by targeting foc1 locus and two quantitative trait loci (QTL) regions, ABQTL‐I and ABQTL‐II, were undertaken to introgress resistance to FW and AB, respectively, in C 214, an elite cultivar of chickpea. In the case of FW, foreground selection (FGS) was conducted with six markers (TR19, TA194, TAA60, GA16, TA110, and TS82) linked to foc1 in the cross C 214 × WR 315 (FW‐resistant). On the other hand, eight markers (TA194, TR58, TS82, GA16, SCY17, TA130, TA2, and GAA47) linked with ABQTL‐I and ABQTL‐II were used in the case of AB by deploying C 214 × ILC 3279 (AB‐resistant) cross. Background selection (BGS) in both crosses was employed with evenly distributed 40 (C 214 × WR 315) to 43 (C 214 × ILC 3279) SSR markers in the chickpea genome to select plant(s) with higher recurrent parent genome (RPG) recovery. By using three backcrosses and three rounds of selfing, 22 BC3F4 lines were generated for C 214 × WR 315 cross and 14 MABC lines for C 214 × ILC 3279 cross. Phenotyping of these lines has identified three resistant lines (with 92.7–95.2% RPG) to race 1 of FW, and seven resistant lines (with 81.7–85.40% RPG) to AB that may be tested for yield and other agronomic traits under multilocation trials for possible release and cultivation.
0
Citation277
0
Save
0

Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches

Mahendar Thudi et al.May 6, 2014
To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.
0
Citation266
0
Save
0

Large‐scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi‐arid tropics of Asia and Africa

Pavana Hiremath et al.May 25, 2011
Summary Chickpea ( Cicer arietinum L.) is an important legume crop in the semi‐arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought‐responsive genes and gene‐based molecular markers. A total of 103 215 tentative unique sequences (TUSs) have been produced from 435 018 Roche/454 reads and 21 491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49 437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20 634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42 141 aligned TUSs with putative gene structures (including 39 281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought‐challenged root tissues of two chickpea genotypes against the TUSs identified 44 639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron‐spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea.
0
Citation255
0
Save
0

Large‐scale development of cost‐effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes

Pavana Hiremath et al.Jun 16, 2012
Summary A set of 2486 single nucleotide polymorphisms (SNPs) were compiled in chickpea using four approaches, namely (i) Solexa/Illumina sequencing (1409), (ii) amplicon sequencing of tentative orthologous genes (TOGs) (604), (iii) mining of expressed sequence tags (ESTs) (286) and (iv) sequencing of candidate genes (187). Conversion of these SNPs to the cost‐effective and flexible throughput Competitive Allele Specific PCR (KASPar) assays generated successful assays for 2005 SNPs. These marker assays have been designated as Chickpea KASPar Assay Markers (CKAMs). Screening of 70 genotypes including 58 diverse chickpea accessions and 12 BC 3 F 2 lines showed 1341 CKAMs as being polymorphic. Genetic analysis of these data clustered chickpea accessions based on geographical origin. Genotyping data generated for 671 CKAMs on the reference mapping population ( Cicer arietinum ICC 4958 × Cicer reticulatum PI 489777) were compiled with 317 unpublished TOG‐SNPs and 396 published markers for developing the genetic map. As a result, a second‐generation genetic map comprising 1328 marker loci including novel 625 CKAMs, 314 TOG‐SNPs and 389 published marker loci with an average inter‐marker distance of 0.59 cM was constructed. Detailed analyses of 1064 mapped loci of this second‐generation chickpea genetic map showed a higher degree of synteny with genome of Medicago truncatula , followed by Glycine max , Lotus japonicus and least with Vigna unguiculata . Development of these cost‐effective CKAMs for SNP genotyping will be useful not only for genetics research and breeding applications in chickpea, but also for utilizing genome information from other sequenced or model legumes.
0
Citation244
0
Save
0

Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers

Neeru Kaushal et al.Jan 1, 2013
Chickpea (Cicer arietinum L.), in its reproductive stage, is sensitive to heat stress (32/20°C or higher as day/night temperatures) with consequent substantial loss of potential yields at high temperatures. The physiological mechanisms associated with reproductive failures have not been established: they constitute the basis of this study. Here, we initially screened a large core-collection of chickpea against heat stress and identified two heat-tolerant (ICC15614, ICCV. 92944) and two heat-sensitive (ICC10685, ICC5912) genotypes. These four genotypes were sown during the normal time of sowing (November-March) and also late (February-April) to expose them to heat stress during reproductive stage (>32/20°C). The genotypes were assessed for damage by heat stress to the leaves and reproductive organs using various indicators of stress injury and reproductive function. In the heat-stressed plants, phenology accelerated as days to flowering and podding, and biomass decreased significantly. The significant reduction in pod set (%) was associated with reduced pollen viability, pollen load, pollen germination (in vivo and in vitro) and stigma receptivity in all four genotypes. Heat stress inhibited pollen function more in the sensitive genotypes than in the tolerant ones, and consequently showed significantly less pod set. Heat stress significantly reduced stomatal conductance, leaf water content, chlorophyll, membrane integrity and photochemical efficiency with a larger effect on heat-sensitive genotypes. Rubisco (carbon-fixing enzyme) along with sucrose phosphate synthase (SPS) and sucrose synthase (SS) (sucrose-synthesising enzymes) decreased significantly in leaves due to heat stress leading to reduced sucrose content. Invertase, a sucrose-cleaving enzyme, was also inhibited along with SPS and SS. The inhibition of these enzymes was significantly greater in the heat-sensitive genotypes. Concurrently, the anthers of these genotypes had significantly less SPS and SS activity and thus, sucrose content. As a result, pollen had considerably lower sucrose levels, resulting in reduced pollen function, impaired fertilisation and poor pod set in heat-sensitive genotypes.
0

Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea

Deepa Jaganathan et al.Oct 24, 2014
To enhance the marker density in the “QTL-hotspot” region, harboring several QTLs for drought tolerance-related traits identified on linkage group 04 (CaLG04) in chickpea recombinant inbred line (RIL) mapping population ICC 4958 × ICC 1882, a genotyping-by-sequencing approach was adopted. In total, 6.24 Gb data from ICC 4958, 5.65 Gb data from ICC 1882 and 59.03 Gb data from RILs were generated, which identified 828 novel single-nucleotide polymorphisms (SNPs) for genetic mapping. Together with these new markers, a high-density intra-specific genetic map was developed that comprised 1,007 marker loci spanning a distance of 727.29 cM. QTL analysis using the extended genetic map along with precise phenotyping data for 20 traits collected over one to seven seasons identified 49 SNP markers in the “QTL-hotspot” region. These efforts have refined the “QTL-hotspot” region to 14 cM. In total, 164 main-effect QTLs including 24 novel QTLs were identified. In addition, 49 SNPs integrated in the “QTL-hotspot” region were converted into cleaved amplified polymorphic sequence (CAPS) and derived CAPS (dCAPS) markers which can be used in marker-assisted breeding.
0
Citation195
0
Save