RK
Ralph Kuehn
Author with expertise in Global Methane Emissions and Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,908
h-index:
20
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm

Ali Omar et al.May 15, 2009
Abstract Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.
0
Paper
Citation1,089
0
Save
0

Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

Mark Vaughan et al.May 5, 2009
Abstract Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth’s atmosphere is critical in assessing the planet’s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.
0
Paper
Citation640
0
Save
0

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance

Zhaoyan Liu et al.Feb 7, 2009
Abstract The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols observed by the lidar aboard the CALIPSO satellite is critical for accurate retrievals of cloud and aerosol optical properties and the correct interpretation of measurements. This paper reviews the theoretical basis of the CALIPSO lidar cloud and aerosol discrimination (CAD) algorithm, and describes the enhancements made to the version 2 algorithm that is used in the current data release (release 2). The paper also presents a preliminary assessment of the CAD performance based on one full day (12 August 2006) of expert manual classification and on one full month (July 2006) of the CALIOP 5-km cloud and aerosol layer products. Overall, the CAD algorithm works well in most cases. The 1-day manual verification suggests that the success rate is in the neighborhood of 90% or better. Nevertheless, several specific layer types are still misclassified with some frequency. Among these, the most prevalent are dense dust and smoke close to the source regions. The analysis of the July 2006 data showed that the misclassification of dust as cloud occurs for &lt;1% of the total tropospheric cloud and aerosol features found. Smoke layers are misclassified less frequently than are dust layers. Optically thin clouds in the polar regions can be misclassified as aerosols. While the fraction of such misclassifications is small compared with the number of aerosol features found globally, caution should be taken when studies are performed on the aerosol in the polar regions. Modifications will be made to the CAD algorithm in future data releases, and the misclassifications encountered in the current data release are expected to be reduced greatly.
0
Paper
Citation555
0
Save
0

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm

Yongxiang Hu et al.Jun 3, 2009
Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithm has been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithm differentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithm works well for both the 0.3° and 3° off-nadir lidar pointing geometry. When the lidar is pointed at 0.3° off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 3° off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals.
0
Paper
Citation331
0
Save
0

Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP

Robert Holz et al.Apr 27, 2008
A global 2‐month comparison is presented between the Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for both cloud detection and cloud top height (CTH) retrievals. Both CALIOP and MODIS are part of the NASA A‐Train constellation of satellites and provide continuous near‐coincident measurements that result in over 28 million cloud detection comparisons and over 5 million CTH comparisons for the months of August 2006 and February 2007. To facilitate the comparison, a computationally efficient and accurate collocation methodology is developed. With the collocated MODIS and CALIOP retrievals, nearly instantaneous comparisons are compiled regionally and globally. Globally, it is found that the MODIS 1‐km cloud mask and the CALIOP 1‐km averaged layer product agreement is 87% for cloudy conditions for both August 2006 and February 2007. For clear‐sky conditions the agreement is 85% (86%) for August (February). The best agreement is found for nonpolar daytime and the poorest agreement in the polar regions. Differences in cloud top heights depend strongly on cloud type. Globally, MODIS underestimates the CTH relative to CALIOP by 1.4 ± 2.9 km for both August 2006 and February 2007. This value of 1.4 km is obtained using the CALIOP 1 km layer products. When compared to the CALIOP 5‐km products, the differences increase to −2.6 ± 3.9 km as a result of CALIOP's increased sensitivity to optically thin cirrus. When only high clouds above 5 km are considered, the differences are found to be greater than 4 km with individual comparisons having differences larger than 10 km. These large differences (>10 km) represent approximately 16% of the nonpolar high cloud retrievals (>5 km). For high clouds it is found that MODIS retrieves a cloud top height for 90% of the clouds detected by the CALIOP 5‐km layer products. The large MODIS underestimates for optically thin cirrus occur for cases when MODIS reverts to a window brightness temperature retrieval instead of CO 2 slicing. A systematic bias is found for marine low‐level stratus clouds, with MODIS overestimating the CTH by over 1 km in dense marine stratocumulus regions. The cause of the bias was identified in the MODIS Collection 5 algorithm; an application of a modified algorithm reduced this bias.
0
Paper
Citation293
0
Save