TM
Takuro Matsunaga
Author with expertise in Hydrogels in Biomedical Applications and Tissue Engineering
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1,350
h-index:
26
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers

Takamasa Sakai et al.Jun 21, 2008
As a new class of high-strength hydrogels, we designed a tetra-PEG gel by combining two symmetrical tetrahedron-like macromonomers of the same size. Because the nanostructural unit of the gel network was defined by the length of the tetrahedral PEG arm, the gel had a homogeneous structure and resultant high mechanical strength comparable to that of native articular cartilage. Furthermore, since the gel was formed by mixing two biocompatible macromonomer solutions, the gelation reaction itself and the resultant gel were also biocompatible. The breaking strength had local maxima at the overlap concentration of the macromonomers (C*) and at 2C*. Dynamic light scattering measurement indicated the near absence of inhomogeneities in the network at C*. Thus, we successfully designed and fabricated a high-strength hydrogel by controlling the homogeneity of network structure for the first time, which will lead to multiplied effects, i.e., contributing to the understanding of ideal networks, providing a universal strategy for designing high-strength gels, and opening up the biomedical application of hydrogels.
0

Structure Characterization of Tetra-PEG Gel by Small-Angle Neutron Scattering

Takuro Matsunaga et al.Feb 3, 2009
The structure of Tetra-PEG gel, a new class of biocompatible, easy-made, and high-strength hydrogel consisting of a four-arm polyethylene glycol (PEG) network, has been investigated by means of small-angle neutron scattering (SANS). Since the Tetra-PEG gel is prepared by cross-end-coupling two kinds of four-arm PEG macromers having different functional groups at the ends, i.e., amine group and succinimidyl ester group respectively, the coupling reaction occurs exclusively between PEG chains carrying different functional groups. SANS results showed that the four-arm PEG macromer aqueous solutions and Tetra-PEG gels were successfully described by the theoretical scattering function for multiarm Gaussian chains and the Ornstein−Zernike function, respectively. Surprisingly, no noticeable excess scattering that originated from cross-linking was observed in Tetra-PEG gels, suggesting that its network structure is extremely uniform. Investigations on nonstoichiometric Tetra-PEG gels showed weakening of the mechanical properties as well as an increase of dangling chains (defects) in the network. It is concluded that Tetra-PEG gels have an extremely uniform network structure, probably mimicking a diamond-like structure, and this is one of the reasons for the advanced mechanical properties of Tetra-PEG gels.
0
Paper
Citation263
0
Save