BP
Bertrand Paviet‐Salomon
Author with expertise in Thin-Film Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,732
h-index:
18
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

Jérémie Werner et al.Jul 30, 2016
Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm2), is still far from standard industrial sizes. We present a 1 cm2 near-infrared transparent perovskite solar cell with 14.5% steady-state efficiency, as compared to 16.4% on 0.25 cm2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency of 25.2%, with a 0.25 cm2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.
0

Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

Florent Sahli et al.Oct 9, 2017
Abstract Perovskite/silicon tandem solar cells are increasingly recognized as promi­sing candidates for next‐generation photovoltaics with performance beyond the single‐junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm −2 . In combination with a cesium‐based perovskite top cell, this leads to tandem cell power‐conversion efficiencies of up to 22.7% obtained from J – V measurements and steady‐state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm 2 monolithic tandem cell with a steady‐state efficiency of 18%.