TM
Thomas McQuade
Author with expertise in Molecular Mechanisms of Apoptosis and Cell Death
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,290
h-index:
22
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Functional complementation between FADD and RIP1 in embryos and lymphocytes

Haibing Zhang et al.Mar 2, 2011
Regulation of cell death is vital for embryonic development and homeostasis in somatic cells, and the Fas-associated death domain (FADD) is a critical signalling adaptor for extrinsic apoptotic pathways. In a study of potential interactions between FADD and receptor interacting protein kinase-1 (RIP1/RIPK1), double deficiency of FADD and RIPK1 is shown to rescue the defects in embryonic development and lymphocyte proliferation seen in mice with single gene deficiencies. This suggests that FADD (presumably in conjunction with caspase-8 and c-FLIP) keeps necrosis in check by causing cleavage of RIPK1. Double deficiency of FADD and RIPK1 is shown to rescue the defects in mouse embryonic development and lymphocyte proliferation that are characteristic for mice with single gene deficiencies. This work suggests that the activity of FADD (presumably in conjunction with caspase-8 and c-FLIP) is to keep necrosis in check by causing the cleavage of RIPK1. FADD is a common adaptor shared by several death receptors for signalling apoptosis through recruitment and activation of caspase 8 (refs 1–3). Death receptors are essential for immune homeostasis, but dispensable during embryogenesis. Surprisingly, Fadd−/− mice die in utero4,5 and conditional deletion of FADD leads to impaired lymphocyte proliferation6,7. How FADD regulates embryogenesis and lymphocyte responses has been a long-standing enigma. FADD could directly bind to RIP1 (also known as RIPK1), a serine/threonine kinase that mediates both necrosis and NF-κB activation. Here we show that Fadd−/− embryos contain raised levels of RIP1 and exhibit massive necrosis. To investigate a potential in vivo functional interaction between RIP1 and FADD, null alleles of RIP1 were crossed into Fadd−/− mice. Notably, RIP1 deficiency allowed normal embryogenesis of Fadd−/− mice. Conversely, the developmental defect of Rip1−/− lymphocytes was partially corrected by FADD deletion. Furthermore, RIP1 deficiency fully restored normal proliferation in Fadd−/− T cells but not in Fadd−/− B cells. Fadd−/−Rip1−/− double-knockout T cells are resistant to death induced by Fas or TNF-α and show reduced NF-κB activity. Therefore, our data demonstrate an unexpected cell-type-specific interplay between FADD and RIP1, which is critical for the regulation of apoptosis and necrosis during embryogenesis and lymphocyte function.
0

CYLD Deubiquitinates RIP1 in the TNFα-Induced Necrosome to Facilitate Kinase Activation and Programmed Necrosis

David Moquin et al.Oct 2, 2013
BackgroundNecroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex. Methodology/Principal FindingsWe demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation. Conclusions/SignificanceOur results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly.
0
Citation284
0
Save
0

Discovery of Allosteric and Selective Inhibitors of Inorganic Pyrophosphatase from Mycobacterium tuberculosis

Allan Pang et al.Sep 13, 2016
Inorganic pyrophosphatase (PPiase) is an essential enzyme that hydrolyzes inorganic pyrophosphate (PPi), driving numerous metabolic processes. We report a discovery of an allosteric inhibitor (2,4-bis(aziridin-1-yl)-6-(1-phenylpyrrol-2-yl)-s-triazine) of bacterial PPiases. Analogues of this lead compound were synthesized to target specifically Mycobacterium tuberculosis (Mtb) PPiase (MtPPiase). The best analogue (compound 16) with a Ki of 11 μM for MtPPiase is a species-specific inhibitor. Crystal structures of MtPPiase in complex with the lead compound and one of its analogues (compound 6) demonstrate that the inhibitors bind in a nonconserved interface between monomers of the hexameric MtPPiase in a yet unprecedented pairwise manner, while the remote conserved active site of the enzyme is occupied by a bound PPi substrate. Consistent with the structural studies, the kinetic analysis of the most potent inhibitor has indicated that it functions uncompetitively, by binding to the enzyme-substrate complex. The inhibitors appear to allosterically lock the active site in a closed state causing its dysfunctionalization and blocking the hydrolysis. These inhibitors are the first examples of allosteric, species-selective inhibitors of PPiases, serving as a proof-of-principle that PPiases can be selectively targeted.
0
Citation21
0
Save