JB
J. Bollinger
Author with expertise in Quantum Information and Computation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
6,420
h-index:
52
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Squeezed atomic states and projection noise in spectroscopy

D. Wineland et al.Jul 1, 1994
We investigate the properties of angular-momentum states which yield high sensitivity to rotation. We discuss the application of these ``squeezed-spin'' or correlated-particle states to spectroscopy. Transitions in an ensemble of N two-level (or, equivalently, spin-1/2) particles are assumed to be detected by observing changes in the state populations of the particles (population spectroscopy). When the particles' states are detected with 100% efficiency, the fundamental limiting noise is projection noise, the noise associated with the quantum fluctuations in the measured populations. If the particles are first prepared in particular quantum-mechanically correlated states, we find that the signal-to-noise ratio can be improved over the case of initially uncorrelated particles. We have investigated spectroscopy for a particular case of Ramsey's separated oscillatory method where the radiation pulse lengths are short compared to the time between pulses. We introduce a squeezing parameter ${\ensuremath{\xi}}_{\mathit{R}}$ which is the ratio of the statistical uncertainty in the determination of the resonance frequency when using correlated states vs that when using uncorrelated states. More generally, this squeezing parameter quantifies the sensitivity of an angular-momentum state to rotation. Other squeezing parameters which are relevant for use in other contexts can be defined. We discuss certain states which exhibit squeezing parameters ${\ensuremath{\xi}}_{\mathit{R}}$\ensuremath{\simeq}${\mathit{N}}^{\mathrm{\ensuremath{-}}1/2}$. We investigate possible experimental schemes for generation of squeezed-spin states which might be applied to the spectroscopy of trapped atomic ions. We find that applying a Jaynes-Cummings--type coupling between the ensemble of two-level systems and a suitably prepared harmonic oscillator results in correlated states with ${\ensuremath{\xi}}_{\mathit{R}}$1.
0

Optimized dynamical decoupling in a model quantum memory

Michael Biercuk et al.Apr 1, 2009
Quantum systems are subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement. Quantum error correction techniques have been developed to facilitate quantum information processing, but the resource requirements are large. This motivates a search for alternative strategies to suppress dephasing in quantum systems. Now Michael Biercuk and colleagues experimentally validate the use of a technique known as dynamical decoupling using optimized pulse sequences to suppress qubit error rates. They find novel pulse sequences that suppress errors by orders of magnitude compared to other existing sequences, and the technique should be applicable across a variety of qubit technologies. Quantum systems are subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement, but existing quantum error correction techniques have large resource requirements, motivating a search for alternative strategies. The authors experimentally validate the use of the dynamical decoupling technique to suppress qubit error rates, using novel optimized pulse sequences that suppress errors by orders of magnitude compared to other existing sequences. Any quantum system, such as those used in quantum information or magnetic resonance, is subject to random phase errors that can dramatically affect the fidelity of a desired quantum operation or measurement1. In the context of quantum information, quantum error correction techniques have been developed to correct these errors, but resource requirements are extraordinary. The realization of a physically tractable quantum information system will therefore be facilitated if qubit (quantum bit) error rates are far below the so-called fault-tolerance error threshold1, predicted to be of the order of 10-3–10-6. The need to realize such low error rates motivates a search for alternative strategies to suppress dephasing in quantum systems2. Here we experimentally demonstrate massive suppression of qubit error rates by the application of optimized dynamical decoupling3,4,5,6,7,8 pulse sequences, using a model quantum system capable of simulating a variety of qubit technologies. We demonstrate an analytically derived pulse sequence9, UDD, and find novel sequences through active, real-time experimental feedback. The latter sequences are tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment, and are capable of suppressing errors by orders of magnitude compared to other existing sequences (including the benchmark multi-pulse spin echo10,11). Our work includes the extension of a treatment to predict qubit decoherence12,13 under realistic conditions, yielding strong agreement between experimental data and theory for arbitrary pulse sequences incorporating nonidealized control pulses. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies11,14,15,16.
0

Quantum projection noise: Population fluctuations in two-level systems

W. Itano et al.May 1, 1993
Measurements of internal energy states of atomic ions confined in traps can be used to illustrate fundamental properties of quantum systems, because long relaxation times and observation times are available. In the experiments described here, a single ion or a few identical ions were prepared in well-defined superpositions of two internal energy eigenstates. The populations of the energy levels were then measured. For an individual ion, the outcome of the measurement is uncertain, unless the amplitude for one of the two eigenstates is zero, and is completely uncertain when the magnitudes of the two amplitudes are equal. In one experiment, a single $^{199}\mathrm{Hg}^{+}$ ion, confined in a linear rf trap, was prepared in various superpositions of two hyperfine states. In another experiment, groups of $^{9}\mathrm{Be}^{+}$ ions, ranging in size from about 5 to about 400 ions, were confined in a Penning trap and prepared in various superposition states. The measured population fluctuations were greater when the state amplitudes were equal than when one of the amplitudes was nearly zero, in agreement with the predictions of quantum mechanics. These fluctuations, which we call quantum projection noise, are the fundamental source of noise for population measurements with a fixed number of atoms. These fluctuations are of practical importance, since they contribute to the errors of atomic frequency standards.
0

Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

Martin Gärttner et al.May 22, 2017
Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Characterizing the correlations of quantum many-body systems is known to be hard, but there are ways around: for example, a new method for measuring out-of-time correlations demonstrated in a Penning trap quantum simulator with over 100 ions.
Load More