DH
Dehong Hu
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(21% Open Access)
Cited by:
5,986
h-index:
62
/
i10-index:
156
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ternary Self-Assembly of Ordered Metal Oxide−Graphene Nanocomposites for Electrochemical Energy Storage

Donghai Wang et al.Feb 25, 2010
Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct ordered metal oxide−graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene or graphene stacks. Alternatively, the graphene or graphene stacks can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can also be used to fabricate free-standing, flexible metal oxide−graphene nanocomposite films and electrodes. We have investigated the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2−graphene nanocomposite films can achieve near theoretical specific energy density without significant charge/discharge degradation.
0

Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy

Zonghai Sheng et al.Dec 2, 2014
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.
0

Bright Aggregation‐Induced‐Emission Dots for Targeted Synergetic NIR‐II Fluorescence and NIR‐I Photoacoustic Imaging of Orthotopic Brain Tumors

Zonghai Sheng et al.May 28, 2018
Abstract Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g −1 cm −1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics.
Load More