AG
Andrey Gorin
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1,408
h-index:
29
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DNA sequence-dependent deformability deduced from protein–DNA crystal complexes

Wilma Olson et al.Sep 15, 1998
The deformability of double helical DNA is critical for its packaging in the cell, recognition by other molecules, and transient opening during biochemically important processes. Here, a complete set of sequence-dependent empirical energy functions suitable for describing such behavior is extracted from the fluctuations and correlations of structural parameters in DNA–protein crystal complexes. These elastic functions provide useful stereochemical measures of the local base step movements operative in sequence-specific recognition and protein-induced deformations. In particular, the pyrimidine-purine dimers stand out as the most variable steps in the DNA–protein complexes, apparently acting as flexible “hinges” fitting the duplex to the protein surface. In addition to the angular parameters widely used to describe DNA deformations (i.e., the bend and twist angles), the translational parameters describing the displacements of base pairs along and across the helical axis are analyzed. The observed correlations of base pair bending and shearing motions are important for nonplanar folding of DNA in nucleosomes and other nucleoprotein complexes. The knowledge-based energies also offer realistic three-dimensional models for the study of long DNA polymers at the global level, incorporating structural features beyond the scope of conventional elastic rod treatments and adding a new dimension to literal analyses of genomic sequences.
0

B-DNA Twisting Correlates with Base-pair Morphology

Andrey Gorin et al.Mar 1, 1995
The observed sequence dependence of the mean twist angles in 38B-DNA crystal structures can be understood in terms of simple geometrical features of the constituent base-pairs. Structures with low twist appear to unwind in response to severe steric clashes of large exocyclic groups (such as NH2—NH2) in the major and minor grooves, while those with high twist are subjected to lesser contacts (H—O and H—H). We offer a simple clash function that depends on base-pair morphology (i.e. the chemical constitution of base-pairs) and satisfactorily accounts for the twist angles of the ten common Watson-Crick dimer steps both in the solid state and in solution. The twist-clash correlation that we find here still holds when extended to modified bases. In addition to Calladine's purine-purine clashes, we add other close contacts between bases in the grooves, and consider the conformational restrictions on the geometry of the sugar-phosphate backbone (namely, we emphasize the tendency of DNA to conserve virtual backbone length). The significance of this finding is threefold: (1) sequence-dependent DNA twisting is directly involved in protein–DNA interactions; (2) strong correlation betweenTwistandRollhelps to elucidate the bending of the double helix as a function of base sequence; (3) it is possible to anticipate the effects of chemical modifications on twisting and bending. The mutual correlations of other structural parameters with the twist make this angle a primary determinant of DNA conformational heterogeneity.
0
Paper
Citation394
0
Save