JH
James Hartle
Author with expertise in Holographic Derivation of Field Theories and Gravity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
7,397
h-index:
59
/
i10-index:
145
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Wave function of the Universe

James Hartle et al.Dec 15, 1983
The quantum state of a spatially closed universe can be described by a wave function which is a functional on the geometries of compact three-manifolds and on the values of the matter fields on these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential equation. We put forward a proposal for the wave function of the "ground state" or state of minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral over all compact positive-definite four-geometries which have the three-geometry as a boundary. The requirement that the Hamiltonian be Hermitian then defines the boundary conditions for the Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we calculate the ground and excited states in a simple minisuperspace model in which the scale factor is the only gravitational degree of freedom, a conformally invariant scalar field is the only matter degree of freedom and $\ensuremath{\Lambda}>0$. The ground state corresponds to de Sitter space in the classical limit. There are excited states which represent universes which expand from zero volume, reach a maximum size, and then recollapse but which have a finite (though very small) probability of tunneling through a potential barrier to a de Sitter-type state of continual expansion. The path-integral approach allows us to handle situations in which the topology of the three-manifold changes. We estimate the probability that the ground state in our minisuperspace model contains more than one connected component of the spacelike surface.
0

Classical equations for quantum systems

Murray Gell‐Mann et al.Apr 15, 1993
The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. A formulation of quantum mechanics is used that predicts probabilities for the individual members of a set of alternative coarse-grained histories that decohere, which means that there is negligible quantum interference between the individual histories in the set. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e., such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of the noise consisting of the fluctuations that typical mechanisms of decoherence produce. We describe the derivation of phenomenological equations of motion explicitly for a particular class of models. Those models assume configuration space and a fundamental Lagrangian that is the difference between a kinetic energy quadratic in the velocities and a potential energy. The distinguished variables are taken to be a fixed subset of coordinates of configuration space. The initial density matrix of the closed system is assumed to factor into a product of a density matrix in the distinguished subset and another in the rest of the coordinates. With these restrictions, we improve the derivation from quantum mechanics of the phenomenological equations of motion governing a quasiclassical domain in the following respects: Probabilities of the correlations in time that define equations of motion are explicitly considered. Fully nonlinear cases are studied. Methods are exhibited for finding the form of the phenomenological equations of motion even when these are only distantly related to those of the fundamental action. The demonstration of the connection between quantum-mechanical causality and causality in classical phenomenological equations of motion is generalized. The connections among decoherence, noise, dissipation, and the amount of coarse graining necessary to achieve classical predictability are investigated quantitatively. Routes to removing the restrictions on the models in order to deal with more realistic coarse grainings are described.
0

Laws of motion and precession for black holes and other bodies

Kip Thorne et al.Apr 15, 1985
Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (``isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through ${\mathrm{post}}^{1.5}$-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets. Unless the hole rotates very slowly, this quadrupole-induced precession is far larger than the spin-down of the hole by tidal distortion (``horizon viscosity''). When the hole is in orbit around a massive companion, the quadrupole-induced precession is far smaller than geodetic precession.