Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
TA
Thomas Antonsen
Author with expertise in Dynamics of Synchronization in Complex Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,075
h-index:
68
/
i10-index:
361
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exact results for the Kuramoto model with a bimodal frequency distribution

Erik Martens et al.Feb 6, 2009
We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.
0

Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems

Ravi Chepuri et al.Jun 1, 2024
Reservoir computers (RCs) are powerful machine learning architectures for time series prediction. Recently, next generation reservoir computers (NGRCs) have been introduced, offering distinct advantages over RCs, such as reduced computational expense and lower training data requirements. However, NGRCs have their own practical difficulties, including sensitivity to sampling time and type of nonlinearities in the data. Here, we introduce a hybrid RC-NGRC approach for time series forecasting of dynamical systems. We show that our hybrid approach can produce accurate short-term predictions and capture the long-term statistics of chaotic dynamical systems in situations where the RC and NGRC components alone are insufficient, e.g., due to constraints from limited computational resources, sub-optimal hyperparameters, sparsely sampled training data, etc. Under these conditions, we show for multiple model chaotic systems that the hybrid RC-NGRC method with a small reservoir can achieve prediction performance approaching that of a traditional RC with a much larger reservoir, illustrating that the hybrid approach can offer significant gains in computational efficiency over traditional RCs while simultaneously addressing some of the limitations of NGRCs. Our results suggest that the hybrid RC-NGRC approach may be particularly beneficial in cases when computational efficiency is a high priority and an NGRC alone is not adequate.