AC
Antonietta Capotondi
Author with expertise in Climate Change and Variability Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
1,995
h-index:
36
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4

Clara Deser et al.Oct 11, 2011
Abstract This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.
0
Paper
Citation314
0
Save
0

Enhanced upper ocean stratification with climate change in the CMIP3 models

Antonietta Capotondi et al.Mar 23, 2012
Changes in upper ocean stratification during the second half of the 21st century, relative to the second half of the 20th century, are examined in ten of the CMIP3 climate models according to the SRES‐A2 scenario. The upper ocean stratification, defined here as the density difference between 200 m and the surface, is larger everywhere during the second half of the 21st century, indicative of an increasing degree of decoupling between the surface and the deeper oceans, with important consequences for many biogeochemical processes. The areas characterized by the largest stratification changes include the Arctic, the tropics, the North Atlantic, and the northeast Pacific. The increase in stratification is primarily due to the increase in surface temperature, whose influence upon density is largest in the tropical regions, and decreases with increasing latitude. The influence of salinity upon the stratification changes, while not as spatially extensive as that of temperature, is very large in the Arctic, North Atlantic and Northeast Pacific. Salinity also significantly contributes to the density decrease near the surface in the western tropical Pacific, but counteracts the negative influence of temperature upon density in the tropical Atlantic.
0
Paper
Citation305
0
Save
0

Ocean Complexity Shapes Sea Surface Temperature Variability in a CESM2 Coupled Model Hierarchy

Sarah Larson et al.Jul 2, 2024
Abstract To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model version 2 hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress-driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress-driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence timescales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models.
0
Paper
Citation1
0
Save
0

The role of the tropical Atlantic in tropical Pacific climate variability

Yingying Zhao et al.Jun 19, 2024
Abstract Interactions between Atlantic and Pacific Oceans can affect tropical Pacific variability and its global impacts at both interannual and decadal timescales. Thus, a deepened understanding of the coupled Atlantic-Pacific interactions is needed. While possible dynamical mechanisms by which the Atlantic can influence the Pacific have been identified, the effectiveness of those mechanisms is difficult to establish using climate model simulations where Atlantic sea surface temperatures (SSTs) are prescribed and Pacific feedbacks cannot be realistically included. As an alternative approach, here we use a Linear Inverse Model (LIM) trained on observations and capable of correctly reproducing the observed statistics, to assess the relative role of the Atlantic-to-Pacific and Pacific-to-Atlantic influences on tropical Pacific variability. Our results indicate that Atlantic internal variability can enhance interannual SST anomalies in the eastern equatorial Pacific, and decadal SST anomalies in the central equatorial Pacific, while Pacific influences on the Atlantic significantly damp tropical Pacific decadal variability. This methodological framework could also be used to assess climate model fidelity in representing tropical basin interactions, helping to reconcile existing differences among models’ results.
0
0
Save
0

A multi-decadal analysis of U.S. and Canadian wind and solar energy droughts

James Wilczak et al.Sep 1, 2024
The spatial and temporal characteristics of wind and solar energy droughts across the contiguous U.S. and most of Canada for the period 1959–2022 are investigated using bias-corrected values of daily wind and solar power generation derived from the ERA5 meteorological reanalysis. The analysis domain has been divided into regions that correspond to four major interconnects and nine sub-regions. Droughts are examined for wind alone, solar alone, or a mix of wind and solar in which each provides 50% of the long-term mean energy produced, for durations of 1–90 days. Wind and solar energy droughts and floods are characterized on a regional basis through intensity–duration–frequency curves. Wind and solar generation are shown to be weakly anti-correlated over most of the analysis domain, with the exception of the southwest U.S. The intensities of wind and solar droughts are found to be strongly dependent on region. In addition, the wind resource in the central U.S. and the solar resource in the southwestern U.S. are sufficiently good that over-weighting capacity in those areas would help mitigate droughts that span the contiguous United States for most duration lengths. The correlation of droughts for the 50%–50% mix of wind and solar generation with temperature shows that the most intense droughts occur when temperatures exhibit relatively moderate values, not when energy demand will be largest. Finally, for all regions except the southeast U.S., winter droughts will have a larger impact on balancing the electric grid than summer droughts.
Load More