JM
Julian Merten
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
3,535
h-index:
42
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

H. Hildebrandt et al.Oct 31, 2016
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find |$S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.745\pm 0.039$|⁠. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl.
0

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

Marc Postman et al.Mar 14, 2012
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θEin > 35'' at zs = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σz ∼ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
0

EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION INz∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES

Renske Smit et al.Mar 4, 2014
Growing observational evidence now indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with lower specific star formation rates. However, corrections for this line emission have been very difficult to perform reliably due to huge uncertainties on the overall strength of such emission at z>~5.5. Here, we present the most direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line emission in Lyman-break galaxies at z~7, while also presenting a strategy for an improved measurement of the sSFR at z~7. We accomplish this through the selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the IRAC 4.5 micron flux provides a clean measurement of the stellar continuum light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a high S/N for our IRAC flux measurements, we consider only the brightest (H_{160}<26 mag) magnified galaxies we have identified in CLASH and other programs targeting galaxy clusters. Remarkably, the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the average source. The bluest four sources from our seven-source sample require an even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean [OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple modeling of the redshift distribution of our sources. We can also set a robust lower limit of >~4 Gyr^-1 on the specific star formation rates based on the mean SED for our seven-source sample. (abridged)
0

Weighing simulated galaxy clusters using lensing and X-ray

G. Meylan et al.Feb 8, 2010
Context. Among the methods employed to measure the mass of galaxy clusters, the techniques based on lensing and X-ray analyses are perhaps the most widely used; however, the comparison between these mass estimates is often difficult and, in several clusters, the results apparently inconsistent.Aims. We aim at investigating potential biases in lensing and X-ray methods to measure the cluster mass profiles.Methods. We performed realistic simulations of lensing and X-ray observations that were subsequently analyzed using observational techniques. The resulting mass estimates were compared with the input models. Three clusters obtained from state-of-the-art hydrodynamical simulations, each of which projected along three independent lines-of-sight, were used for this analysis.Results. We find that strong lensing models can be trusted over a limited region around the cluster core. Extrapolating the strong lensing mass models to outside the Einstein ring can lead to significant biases in the mass estimates, if the BCG is not modeled properly, for example. Weak-lensing mass measurements can be strongly affected by substructures, depending on the method implemented to convert the shear into a mass estimate. Using nonparametric methods which combine weak and strong lensing data, the projected masses within R200 can be constrained with a precision of ~10%. Deprojection of lensing masses increases the scatter around the true masses by more than a factor of two because of cluster triaxiality. X-ray mass measurements have much smaller scatter (about a factor of two less than the lensing masses), but they are generally biased toward low values between 5 and 10%. This bias is entirely ascribable to bulk motions in the gas of our simulated clusters. Using the lensing and the X-ray masses as proxies for the true and the hydrostatic equilibrium masses of the simulated clusters and by averaging over the cluster sample, we are able to measure the lack of hydrostatic equilibrium in the systems we have investigated.Conclusions. Although the comparison between lensing and X-ray masses may be difficult in individual systems due to triaxiality and substructures, using a large number of clusters with both lensing and X-ray observations may lead to important information about their gas physics and allow use of lensing masses to calibrate the X-ray scaling relations.
0

CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS

Keiichi Umetsu et al.Oct 28, 2014
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≃ 25 in the radial range of 200–3500 kpc h−1, providing integrated constraints on the halo profile shape and concentration–mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of at an effective halo mass of . We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is , which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.
0

Creation of cosmic structure in the complex galaxy cluster merger Abell 2744

Julian Merten et al.Sep 19, 2011
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0.308), one of the most actively merging galaxy clusters known. It appears to have unleashed `dark', `ghost', `bullet' and `stripped' substructures, each ~10^14 solar masses. The phenomenology is complex and will present a challenge for numerical simulations to reproduce. With new, multiband HST imaging, we identify 34 strongly-lensed images of 11 galaxies around the massive Southern `core'. Combining this with weak lensing data from HST, VLT and Subaru, we produce the most detailed mass map of this cluster to date. We also perform an independent analysis of archival Chandra X-ray imaging. Our analyses support a recent claim that the Southern core and Northwestern substructure are post-merger and exhibit morphology similar to the Bullet Cluster viewed from an angle. From the separation between X-ray emitting gas and lensing mass in the Southern core, we derive a new and independent constraint on the self-interaction cross section of dark matter particles sigma/m <~ 3 \pm 1 cm^2 g^-1. In the Northwestern substructure, the gas, dark matter, and galaxy components have become separated by much larger distances. Most curiously, the `ghost' clump (primarily gas) leads the `dark' clump (primarily dark matter) by more than 150 kpc. We propose an enhanced `ram-pressure slingshot' scenario which may have yielded this reversal of components with such a large separation, but needs further confirmation by follow-up observations and numerical simulations. A secondary merger involves a second `bullet' clump in the North and an extremely `stripped' clump to the West. The latter appears to exhibit the largest separation between dark matter and X-ray emitting baryons detected to date in our sky.
0

KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering

Edo Uitert et al.Mar 2, 2018
We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in $\sim$450 deg$^2$ of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain $S_8\equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}=0.800_{-0.027}^{+0.029}$, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalising over wide priors on the mean of the tomographic redshift distributions yields consistent results for $S_8$ with an increase of $28\%$ in the error. The combination of probes results in a $26\%$ reduction in uncertainties of $S_8$ over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of two better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.
0

KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters

F. Köhlinger et al.Jul 18, 2017
We present measurements of the weak gravitational lensing shear power spectrum based on $450$ sq. deg. of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift auto-correlation and cross-correlation spectra in the multipole range $76 \leq \ell \leq 1310$. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a $\Lambda$CDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalising over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$ yielding $S_8 = \ 0.651 \pm 0.058$ (3 z-bins), confirming the recently reported tension in this parameter with constraints from Planck at $3.2\sigma$ (3 z-bins). We cross-check the results of the 3 z-bin analysis with the weaker constraints from the 2 z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions, and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl/