The dual threats of the depletion of nonrenewable energy and environmental pollution caused by petroleum-based polymers motivate utilization of naturally occurring polymers to create new materials. Cellulose, as the most abundant natural polymer on earth, has attracted attention due to its renewability, wide availability, low-cost, biocompatibility and biodegradability, etc. Regenerated cellulose may be constructed simply via physical dissolution and regeneration, an environmentally friendly process avoiding the consuming of chemicals since most of the reagents (solvents, coagulant, etc.) may be recycled and reused. “Green” solvents and techniques for the preparation of the environmentally friendly regenerated cellulose materials have been developed successfully, showing great potentials in the fields of polymer science and technology. In this article, the widely used non-derivatizing cellulose solvents are summarized, including their dissolution mechanisms. Regenerated cellulose materials with different functions and properties have been designed and fabricated in different forms, such as filaments, films/membranes, microspheres/beads, hydrogels/aerogels and bioplastics, etc., to meet various demands. The concept of regeneration through a physical process is illustrated, and a number of novel regenerated cellulose materials are introduced for wide applications in textiles, packaging, biomedicine, water treatment, optical/electrical devices, agriculture and food, etc. The methodology of material processing and the resultant properties and functions are also covered in this review, with emphasis on the neat regenerated cellulose materials and the composite materials. The 277 references cited concerning the direct preparation of cellulose materials via physical dissolution and regeneration are representative of the wide impact and benefits of the regenerated cellulose materials to society.