XL
Xiao Liu
Author with expertise in Unmanned Aerial Vehicle Communications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,823
h-index:
22
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reconfigurable Intelligent Surfaces: Principles and Opportunities

Yuanwei Liu et al.Jan 1, 2021
Reconfigurable intelligent surfaces (RISs), also known as intelligent reflecting surfaces (IRSs), or large intelligent surfaces (LISs), 1 have received significant attention for their potential to enhance the capacity and coverage of wireless networks by smartly reconfiguring the wireless propagation environment. Therefore, RISs are considered a promising technology for the sixth-generation (6G) of communication networks. In this context, we provide a comprehensive overview of the state-of-the-art on RISs, with focus on their operating principles, performance evaluation, beamforming design and resource management, applications of machine learning to RIS-enhanced wireless networks, as well as the integration of RISs with other emerging technologies. We describe the basic principles of RISs both from physics and communications perspectives, based on which we present performance evaluation of multiantenna assisted RIS systems. In addition, we systematically survey existing designs for RIS-enhanced wireless networks encompassing performance analysis, information theory, and performance optimization perspectives. Furthermore, we survey existing research contributions that apply machine learning for tackling challenges in dynamic scenarios, such as random fluctuations of wireless channels and user mobility in RIS-enhanced wireless networks. Last but not least, we identify major issues and research opportunities associated with the integration of RISs and other emerging technologies for applications to next-generation networks.  Without loss of generality, we use the name of RIS in the remainder of this paper. 
0

Trajectory Design and Power Control for Multi-UAV Assisted Wireless Networks: A Machine Learning Approach

Xiao Liu et al.May 31, 2019
A novel framework is proposed for the trajectory design of multiple unmanned aerial vehicles (UAVs) based on the prediction of users' mobility information. The problem ofjoint trajectory design and power control is formulated for maximizing the instantaneous sum transmit rate while satisfying the rate requirement of users. In an effort to solve this pertinent problem, a threestep approach is proposed, which is based on machine learning techniques to obtain both the position information of users and the trajectory design of UAVs. First, a multi-agent Q-learning-based placement algorithm is proposed for determining the optimal positions of the UAVs based on the initial location of the users. Second, in an effort to determine the mobility information of users based on a real dataset, their position data is collected from Twitter to describe the anonymous user-trajectories in the physical world. In the meantime, an echo state network (ESN) based prediction algorithm is proposed for predicting the future positions of users based on the real dataset. Third, a multi-agent Q-learning-based algorithm is conceived for predicting the position of UAVs in each time slot based on the movement of users. In this algorithm, multiple UAVs act as agents to find optimal actions by interacting with their environment and learn from their mistakes. Additionally, we also prove that the proposed multi-agent Q-learning-based trajectory design and power control algorithm can converge under mild conditions. Numerical results are provided to demonstrate that as the size of the reservoir increases, the proposed ESN approach improves the prediction accuracy. Finally, we demonstrate that the throughput gains of about 17% are achieved.
0

Reinforcement Learning in Multiple-UAV Networks: Deployment and Movement Design

Xiao Liu et al.Jun 13, 2019
A novel framework is proposed for quality of experience driven deployment and dynamic movement of multiple unmanned aerial vehicles (UAVs). The problem of joint non-convex three-dimensional (3-D) deployment and dynamic movement of the UAVs is formulated for maximizing the sum mean opinion score of ground users, which is proved to be NP-hard. In the aim of solving this pertinent problem, a three-step approach is proposed for attaining 3-D deployment and dynamic movement of multiple UAVs. First, a genetic algorithm based K-means (GAK-means) algorithm is utilized for obtaining the cell partition of the users. Second, Q-learning based deployment algorithm is proposed, in which each UAV acts as an agent, making their own decision for attaining 3-D position by learning from trial and mistake. In contrast to the conventional genetic algorithm based learning algorithms, the proposed algorithm is capable of training the direction selection strategy offline. Third, Q-learning based movement algorithm is proposed in the scenario that the users are roaming. The proposed algorithm is capable of converging to an optimal state. Numerical results reveal that the proposed algorithms show a fast convergence rate after a small number of iterations. Additionally, the proposed Q-learning based deployment algorithm outperforms K-means algorithms and Iterative-GAKmean algorithms with low complexity.
0

Machine Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Wireless Networks

Xiao Liu et al.Dec 2, 2020
A novel framework is proposed for integrating reconfigurable intelligent surfaces (RIS) in unmanned aerial vehicle (UAV) enabled wireless networks, where an RIS is deployed for enhancing the service quality of the UAV. Non-orthogonal multiple access (NOMA) technique is invoked to further improve the spectrum efficiency of the network, while mobile users (MUs) are considered as roaming continuously. The energy consumption minimizing problem is formulated by jointly designing the movement of the UAV, phase shifts of the RIS, power allocation policy from the UAV to MUs, as well as determining the dynamic decoding order. A decaying deep Q-network (D-DQN) based algorithm is proposed for tackling this pertinent problem. In the proposed D-DQN based algorithm, the central controller is selected as an agent for periodically observing the state of UAV-enabled wireless network and for carrying out actions to adapt to the dynamic environment. In contrast to the conventional DQN algorithm, the decaying learning rate is leveraged in the proposed D-DQN based algorithm for attaining a tradeoff between accelerating training speed and converging to the local optimal. Numerical results demonstrate that: 1) In contrast to the conventional Q-learning algorithm, which cannot converge when being adopted for solving the formulated problem, the proposed D-DQN based algorithm is capable of converging with minor constraints; 2) The energy dissipation of the UAV can be significantly reduced by integrating RISs in UAV-enabled wireless networks; 3) By designing the dynamic decoding order and power allocation policy, the RIS-NOMA case consumes 11.7% less energy than the RIS-OMA case.
0

RIS Enhanced Massive Non-Orthogonal Multiple Access Networks: Deployment and Passive Beamforming Design

Xiao Liu et al.Aug 24, 2020
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS) with the aid of non-orthogonal multiple access (NOMA) technology. The problem of joint deployment, phase shift design, as well as power allocation in the multiple-input-single-output (MISO) NOMA network is formulated for maximizing the energy efficiency with considering users particular data requirements. To tackle this pertinent problem, machine learning approaches are adopted in two steps. Firstly, a novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset. Secondly, a decaying double deep Q-network (D 3 QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS. In the proposed algorithm, the base station, which controls the RIS by a controller, acts as an agent. The agent periodically observes the state of the RIS-enhanced system for attaining the optimal deployment and design policies of the RIS by learning from its mistakes and the feedback of users. Additionally, it is proved that the proposed D 3 QN based deployment and design algorithm is capable of converging within mild conditions. Simulation results are provided for illustrating that the proposed LSTM-based ESN algorithm is capable of striking a tradeoff between the prediction accuracy and computational complexity. Finally, it is demonstrated that the proposed D 3 QN based algorithm outperforms the benchmarks, while the NOMA-enhanced RIS system is capable of achieving higher energy efficiency than orthogonal multiple access (OMA) enabled RIS system.