QA
Quinten Akkerman
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
6,451
h-index:
33
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

Quinten Akkerman et al.Dec 22, 2016
Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm−2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V. Despite their impressive performance, more efforts are required to develop industrially scalable perovskite solar cells from less toxic solvents. Towards that aim, this study presents the use of colloidal nanoparticle inks for room-temperature fabrication of CsPbBr3 solar cells.
0

Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals

Quinten Akkerman et al.Feb 14, 2017
We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX64- octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with mixed halide composition exhibit absorption bands that are intermediate in spectral position between those of the pure halide compounds. Furthermore, the absorption bands of intermediate compositions broaden due to the different possible combinations of halide coordination around the Pb2+ ions. Both observations are supportive of the fact that the [PbX6]4- octahedra are electronically decoupled in these systems. Because of the large band gap of Cs4PbX6 (>3.2 eV), no excitonic emission in the visible range was observed. The Cs4PbBr6 nanocrystals can be converted into green fluorescent CsPbBr3 nanocrystals by their reaction with an excess of PbBr2 with preservation of size and size distributions. The insertion of PbX2 into Cs4PbX6 provides a means of accessing CsPbX3 nanocrystals in a wide variety of sizes, shapes, and compositions, an important aspect for the development of precisely tuned perovskite nanocrystal inks.
0

X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water

Pédro Romeo et al.Nov 30, 2015
Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C═C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbIxBryClz compositions, starting from a film with homogeneous CsPbX3 composition. (iii) Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices. (iv) Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments.
0

What Defines a Halide Perovskite?

Quinten Akkerman et al.Jan 28, 2020
ADVERTISEMENT RETURN TO ISSUEPREVViewpointNEXTWhat Defines a Halide Perovskite?Quinten A. Akkerman*Quinten A. AkkermanNanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy*Email: [email protected]More by Quinten A. Akkerman and Liberato Manna*Liberato MannaNanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy*Email: [email protected]More by Liberato Mannahttp://orcid.org/0000-0003-4386-7985Cite this: ACS Energy Lett. 2020, 5, 2, 604–610Publication Date (Web):January 28, 2020Publication History Received7 January 2020Accepted17 January 2020Published online28 January 2020Published inissue 14 February 2020https://pubs.acs.org/doi/10.1021/acsenergylett.0c00039https://doi.org/10.1021/acsenergylett.0c00039article-commentaryACS PublicationsCopyright © 2020 American Chemical Society. This publication is licensed under CC-BY. This publication is Open Access under the license indicated. Learn MoreArticle Views35965Altmetric-Citations254LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail PDF (6 MB) Get e-AlertscloseSUBJECTS:Cations,Halogens,Inorganic compounds,Metals,Perovskites Get e-Alerts
0

In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals

Zhiya Dang et al.Jan 25, 2017
An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms.
0

Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators

Francesco Meinardi et al.Sep 15, 2017
Halide perovskite nanocrystals (NCs) are promising solution-processed emitters for low-cost optoelectronics and photonics. Doping adds a degree of freedom for their design and enables us to fully decouple their absorption and emission functions. This is paramount for luminescent solar concentrators (LSCs) that enable fabrication of electrode-less solar windows for building-integrated photovoltaic applications. Here, we demonstrate the suitability of manganese-doped CsPbCl3 NCs as reabsorption-free emitters for large-area LSCs. Light propagation measurements and Monte Carlo simulations indicate that the dopant emission is unaffected by reabsorption. Nanocomposite LSCs were fabricated via mass copolymerization of acrylate monomers, ensuring thermal and mechanical stability and optimal compatibility of the NCs, with fully preserved emission efficiency. As a result, perovskite LSCs behave closely to ideal devices, in which all portions of the illuminated area contribute equally to the total optical power. These results demonstrate the potential of doped perovskite NCs for LSCs, as well as for other photonic technologies relying on low-attenuation long-range optical wave guiding.
Load More