GD
Graeme Dandy
Author with expertise in Hydrological Modeling using Machine Learning Methods
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(40% Open Access)
Cited by:
4,631
h-index:
54
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions

Holger Maier et al.Mar 23, 2010
Over the past 15 years, artificial neural networks (ANNs) have been used increasingly for prediction and forecasting in water resources and environmental engineering. However, despite this high level of research activity, methods for developing ANN models are not yet well established. In this paper, the steps in the development of ANN models are outlined and taxonomies of approaches are introduced for each of these steps. In order to obtain a snapshot of current practice, ANN development methods are assessed based on these taxonomies for 210 journal papers that were published from 1999 to 2007 and focus on the prediction of water resource variables in river systems. The results obtained indicate that the vast majority of studies focus on flow prediction, with very few applications to water quality. Methods used for determining model inputs, appropriate data subsets and the best model structure are generally obtained in an ad-hoc fashion and require further attention. Although multilayer perceptrons are still the most popular model architecture, other model architectures are also used extensively. In relation to model calibration, gradient based methods are used almost exclusively. In conclusion, despite a significant amount of research activity on the use of ANNs for prediction and forecasting of water resources variables in river systems, little of this is focused on methodological issues. Consequently, there is still a need for the development of robust ANN model development approaches.
0
Paper
Citation784
0
Save
0

Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

Holger Maier et al.Oct 4, 2014
The development and application of evolutionary algorithms (EAs) and other metaheuristics for the optimisation of water resources systems has been an active research field for over two decades. Research to date has emphasized algorithmic improvements and individual applications in specific areas (e.g. model calibration, water distribution systems, groundwater management, river-basin planning and management, etc.). However, there has been limited synthesis between shared problem traits, common EA challenges, and needed advances across major applications. This paper clarifies the current status and future research directions for better solving key water resources problems using EAs. Advances in understanding fitness landscape properties and their effects on algorithm performance are critical. Future EA-based applications to real-world problems require a fundamental shift of focus towards improving problem formulations, understanding general theoretic frameworks for problem decompositions, major advances in EA computational efficiency, and most importantly aiding real decision-making in complex, uncertain application contexts.
0
Paper
Citation568
0
Save
0

Input determination for neural network models in water resources applications. Part 1—background and methodology

Gavin Bowden et al.Aug 5, 2004
The use of artificial neural network (ANN) models in water resources applications has grown considerably over the last decade. However, an important step in the ANN modelling methodology that has received little attention is the selection of appropriate model inputs. This article is the first in a two-part series published in this issue and addresses the lack of a suitable input determination methodology for ANN models in water resources applications. The current state of input determination is reviewed and two input determination methodologies are presented. The first method is a model-free approach, which utilises a measure of the mutual information criterion to characterise the dependence between a potential model input and the output variable. To facilitate the calculation of dependence in the case of multiple inputs, a partial measure of the mutual information criterion is used. In the second method, a self-organizing map (SOM) is used to reduce the dimensionality of the input space and obtain independent inputs. To determine which inputs have a significant relationship with the output (dependent) variable, a hybrid genetic algorithm and general regression neural network (GAGRNN) is used. Both input determination techniques are tested on a number of synthetic data sets, where the dependence attributes were known a priori. In the second paper of the series, the input determination methodology is applied to a real-world case study in order to determine suitable model inputs for forecasting salinity in the River Murray, South Australia, 14 days in advance.
0
Citation518
0
Save