HT
Haifa Tamiminia
Author with expertise in Remote Sensing in Vegetation Monitoring and Phenology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
1
(0% Open Access)
Cited by:
784
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Google Earth Engine for geo-big data applications: A meta-analysis and systematic review

Haifa Tamiminia et al.May 7, 2020
Google Earth Engine (GEE) is a cloud-based geospatial processing platform for large-scale environmental monitoring and analysis. The free-to-use GEE platform provides access to (1) petabytes of publicly available remote sensing imagery and other ready-to-use products with an explorer web app; (2) high-speed parallel processing and machine learning algorithms using Google’s computational infrastructure; and (3) a library of Application Programming Interfaces (APIs) with development environments that support popular coding languages, such as JavaScript and Python. Together these core features enable users to discover, analyze and visualize geospatial big data in powerful ways without needing access to supercomputers or specialized coding expertise. The development of GEE has created much enthusiasm and engagement in the remote sensing and geospatial data science fields. Yet after a decade since GEE was launched, its impact on remote sensing and geospatial science has not been carefully explored. Thus, a systematic review of GEE that can provide readers with the “big picture” of the current status and general trends in GEE is needed. To this end, the decision was taken to perform a meta-analysis investigation of recent peer-reviewed GEE articles focusing on several features, including data, sensor type, study area, spatial resolution, application, strategy, and analytical methods. A total of 349 peer-reviewed articles published in 146 different journals between 2010 and October 2019 were reviewed. Publications and geographical distribution trends showed a broad spectrum of applications in environmental analyses at both regional and global scales. Remote sensing datasets were used in 90% of studies while 10% of the articles utilized ready-to-use products for analyses. Optical satellite imagery with medium spatial resolution, particularly Landsat data with an archive exceeding 40 years, has been used extensively. Linear regression and random forest were the most frequently used algorithms for satellite imagery processing. Among ready-to-use products, the normalized difference vegetation index (NDVI) was used in 27% of studies for vegetation, crop, land cover mapping and drought monitoring. The results of this study confirm that GEE has and continues to make substantive progress on global challenges involving process of geo-big data.
0
Paper
Citation784
0
Save