MG
Mark Green
Author with expertise in High-Temperature Superconductivity in Iron-Based Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
4,410
h-index:
61
/
i10-index:
213
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction

Upakul Deka et al.Jan 24, 2012
NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability for this reaction. In this work, we have studied the origin of the SCR activity of Cu-SSZ-13 as evidenced from a combination of synchrotron-based and laboratory techniques. Synchrotron-based in situ XAFS/XRD measurements were used to provide complementary information on the local copper environment under realistic NH3-SCR conditions. Crucial then to the catalytic activity of Cu-SSZ-13 is the local environment of the copper species, particularly in the zeolite. Cu-SSZ-13 contains mononuclear Cu2+ species, located in the face of the double-6-ring subunit of the zeolite after calcination where it remains under reaction conditions. At lower temperatures (with low activity), XAFS and XRD data revealed a conformational change in the local geometry of the copper from a planar form toward a distorted tetrahedron as a result of a preferential interaction with NH3. This process appears necessary for activity, but results in a stymieing of activity at low temperatures. At higher temperatures, the Cu2+ possess a local coordination state akin to that seen after calcination.
0

Bisphosphonate-Anchored PEGylation and Radiolabeling of Superparamagnetic Iron Oxide: Long-Circulating Nanoparticles for in Vivo Multimodal (T1 MRI-SPECT) Imaging

Lydia Sandiford et al.Nov 29, 2012
The efficient delivery of nanomaterials to specific targets for in vivo biomedical imaging is hindered by rapid sequestration by the reticuloendothelial system (RES) and consequent short circulation times. To overcome these two problems, we have prepared a new stealth PEG polymer conjugate containing a terminal 1,1-bisphosphonate (BP) group for strong and stable binding to the surface of ultrasmall-superparamagnetic oxide nanomaterials (USPIOs). This polymer, PEG(5)-BP, can be used to exchange the hydrophobic surfactants commonly used in the synthesis of USPIOs very efficiently and at room temperature using a simple method in 1 h. The resulting nanoparticles, PEG(5)-BP-USPIOs are stable in water or saline for at least 7 months and display a near-zero ζ-potential at neutral pH. The longitudinal (r1) and transverse (r2) relaxivities were measured at a clinically relevant magnetic field (3 T), revealing a high r1 of 9.5 mM–1 s–1 and low r2/r1 ratio of 2.97, making these USPIOs attractive as T1-weighted MRI contrast agents at high magnetic fields. The strong T1-effect was demonstrated in vivo, revealing that PEG(5)-BP-USPIOs remain in the bloodstream and enhance its signal 6-fold, allowing the visualization of blood vessels and vascular organs with high spatial definition. Furthermore, the optimal relaxivity properties allow us to inject a dose 4 times lower than with other USPIOs. PEG(5)-BP-USPIOs can also be labeled using a radiolabeled-BP for visualization with single photon emission computed tomography (SPECT), and thus affording dual-modality contrast. The SPECT studies confirmed low RES uptake and long blood circulation times (t1/2 = 2.97 h). These results demonstrate the potential of PEG(5)-BP-USPIOs for the development of targeted multimodal imaging agents for molecular imaging.
0
Paper
Citation248
0
Save
Load More