NL
Ning Liu
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
1,445
h-index:
33
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting

Tang Tang et al.May 23, 2017
Developing bifunctional efficient and durable non-noble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable and challenging for overall water splitting. Herein, Co–Mn carbonate hydroxide (CoMnCH) nanosheet arrays with controllable morphology and composition were developed on nickel foam (NF) as such a bifunctional electrocatalyst. It is discovered that Mn doping in CoCH can simultaneously modulate the nanosheet morphology to significantly increase the electrochemical active surface area for exposing more accessible active sites and tune the electronic structure of Co center to effectively boost its intrinsic activity. As a result, the optimized Co1Mn1CH/NF electrode exhibits unprecedented OER activity with an ultralow overpotential of 294 mV at 30 mA cm–2, compared with all reported metal carbonate hydroxides. Benefited from 3D open nanosheet array topographic structure with tight contact between nanosheets and NF, it is able to deliver a high and stable current density of 1000 mA cm–2 at only an overpotential of 462 mV with no interference from high-flux oxygen evolution. Despite no reports about effective HER on metal carbonate hydroxides yet, the small overpotential of 180 mV at 10 mA cm–2 for HER can be also achieved on Co1Mn1CH/NF by the dual modulation of Mn doping. This offers a two-electrode electrolyzer using bifunctional Co1Mn1CH/NF as both anode and cathode to perform stable overall water splitting with a cell voltage of only 1.68 V at 10 mA cm–2. These findings may open up opportunities to explore other multimetal carbonate hydroxides as practical bifunctional electrocatalysts for scale-up water electrolysis.
0

Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes

Xuemei Zhou et al.Mar 24, 2017
Photocatalytic reactions on TiO2 have recently gained an enormous resurgence because of various new strategies and findings that promise to drastically increase efficiency and specificity of such reactions by modifications of the titania scaffold and chemistry. In view of geometry, in particular, anodic TiO2 nanotubes have attracted wide interest, as they allow a high degree of control over the separation of photogenerated charge carriers not only in photocatalytic reactions but also in photoelectrochemical reactions. A key advantage of ordered nanotube arrays is that nanotube modifications can be embedded site specifically into the tube wall; that is, cocatalysts, doping species, or junctions can be placed at highly defined desired locations (or with a desired regular geometry or pattern) along the tube wall. This allows an unprecedented level of engineering of energetics of reaction sites for catalytic and photocatalytic reactions, which target not only higher efficiencies but also the selectivity of reactions. Many recent tube alterations are of a morphologic nature (mesoporous structures, designed faceted crystallites, hybrids, or 1D structures), but a number of color-coded (namely, black, blue, red, green, gray) modifications have attracted wide interest because of the extension of the light absorption spectrum of titania in the visible range and because unique catalytic activity can be induced. The present Perspective gives an overview of TiO2 nanotubes in photocatalysis with an emphasis on the most recent advances in the use of nanotube arrays and discusses the underlying concepts in tailoring their photocatalytic reactivity.