TK
T. Kronborg
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2,036
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY

A. Conley et al.Dec 13, 2010
We combine high redshift Type Ia supernovae from the first 3 years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-$z$, 93 SDSS, 242 SNLS, and 14 {\it Hubble Space Telescope}). SN data alone require cosmic acceleration at >99.9% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least $z=1.4$) in a flat universe, we find $w = -0.91^{+0.16}_{-0.20}(\mathrm{stat}) ^{+0.07}_{-0.14} (\mathrm{sys})$ from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematics covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.
0

The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

Boryana Hadzhiyska et al.Jun 28, 2010
We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.
0
Paper
Citation469
0
Save
0

SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES

M. Sullivan et al.Aug 8, 2011
We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H0 from SHOES, in a flat universe we find Ωm = 0.269 ± 0.015 and w = −1.061+0.069− 0.068 (where the uncertainties include all statistical and SN Ia systematic errors)—a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes—without these calibration effects, systematics contribute only a ∼2% error in w. When relaxing the assumption of flatness, we find Ωm = 0.271 ± 0.015, Ωk = −0.002 ± 0.006, and w = −1.069+0.091− 0.092. Parameterizing the time evolution of w as w(a) = w0 + wa(1 − a) gives w0 = −0.905 ± 0.196, wa = −0.984+1.094− 1.097 in a flat universe. All of our results are consistent with a flat, w = −1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, β, relating SN Ia luminosity and color, varies with host parameters at >4σ significance (in addition to the known SN luminosity–host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.
0

The dependence of Type Ia Supernovae luminosities on their host galaxies

M. Sullivan et al.May 1, 2010
(Abridged) Precision cosmology with Type Ia supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08mag (~4.0sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star-formation rates (sSFR). SNe Ia in galaxies with a low sSFR also have a smaller slope ("beta") between their luminosities and colours with ~2.7sigma significance, and a smaller scatter on SN Ia Hubble diagrams (at 95% confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is interpreted as a metallicity indicator, the luminosity trends are in qualitative agreement with theoretical predictions. We show that the average stellar mass, and therefore the average metallicity, of our SN Ia host galaxies decreases with redshift. The SN Ia luminosity differences consequently introduce a systematic error in cosmological analyses, comparable to the current statistical uncertainties on parameters such as w. We show that the use of two SN Ia absolute magnitudes, one for events in high-mass (metal-rich) galaxies, and one for events in low-mass (metal-poor) galaxies, adequately corrects for the differences. Cosmological fits incorporating these terms give a significant reduction in chi^2 (3.8-4.5sigma). We conclude that future SN Ia cosmological analyses should use a correction of this (or similar) form to control demographic shifts in the galaxy population.