NW
Nozomi Watanabe
Author with expertise in Role of Nitric Oxide in Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,995
h-index:
39
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Does superoxide underlie the pathogenesis of hypertension?

K Nakazono et al.Nov 15, 1991
Although active oxygen species play important roles in the pathogenesis of various diseases, the molecular mechanism for oxygen toxicity in vascular diseases remains to be elucidated. Since endothelium-derived relaxing factor (EDRF) is inactivated by superoxide radicals in vitro, oxidative stress in and around vascular endothelial cells may affect the circulatory status of animals. To study the role of superoxide radicals and related enzymes, such as superoxide dismutase (SOD), in vascular diseases, we have developed a fusion protein (HB-SOD) consisting of human Cu/Zn-type SOD and a C-terminal basic peptide with high affinity for heparan sulfate on endothelial cells. When injected intravenously, HB-SOD bound to vascular endothelial cells, underwent transcellular transport, and localized within vascular walls by a heparin-inhibitable mechanism. The blood pressure of spontaneously hypertensive rats (SHR) but not normal animals was decreased significantly by HB-SOD. Heparin inhibited the depressor effect of HB-SOD. In contrast, native SOD had no effect on blood pressure of either SHR or normal rats. Neither H2O2-inactivated HB-SOD nor the C-terminal heparin-binding peptide showed such a depressor effect, suggesting that the catalytic function of HB-SOD is responsible for its depressor action. To know the source of superoxide radicals, we determined xanthine oxidase activity in the aorta and uric acid levels in the plasma. Although no appreciable difference in xanthine oxidase activity was found between the two animal groups, uric acid levels were significantly higher in SHR than in normal rats. Oxypurinol, a potent inhibitor of xanthine oxidase, also decreased the blood pressure of SHR but not of normal rats. These findings indicate that superoxide radicals in and around vascular endothelial cells play critical roles in the pathogenesis of hypertension of SHR.
0

JCS/JSCS/JATS/JSVS 2020 Guidelines on the Management of Valvular Heart Disease

Chisato Izumi et al.Sep 10, 2020
Should early surgery be conducted for asymptomatic patients with severe AR with an LVEF ≥50% and an LVESD index >25 mm/m 2 ?Early surgery may be considered for asymptomatic patients with severe AR with an LVEF ≥50% and an LVESD index >25 mm/m 2 .2 C CQ 3 Should early operation be conducted for asymptomatic patients with very severe AS and preserved LVEF?If the transvalvular peak velocity is ≥5.0 m/s, the mean transvalvular pressure gradient is ≥60 mmHg, or the AVA is ≤0.6 cm 2 , operation is recommended for asymptomatic patients at low surgical risk. B CQ 4Should concomitant tricuspid valve repair be conducted for patients with mild TR and tricuspid annular dilation (>40 mm or 21 mm/m 2 in diameter)?Concomitant tricuspid valve repair may be considered for patients with mild TR and tricuspid annular dilation (>40 mm or 21 mm/m 2 in diameter). C CQ 5Can direct oral anticoaglants (DOACs) be used in patients with AF after bioprosthetic valve replacement?DOACs can be used in patients with AF and bioprosthesis after the 3rd postoperative month. 2 C AF, atrial fibrillation; AS, aortic stenosis; AVA, aortic valve area; LVEF, left ventricular ejection fraction; LVESD, LV end-systolic dimension; MR, mitral regurgitation; TR, tricuspid regurgitation.Table 5. Frequency of Echocardiographic Examinations in Asymptomatic Patients With Valvular Heart Disease Stage Valve lesion Aortic stenosis Aortic regurgitation Mitral stenosis Mitral regurgitation Mild Every 3-5 years Every 3-5 years Every 3-5 years Every 3-5 years Moderate Every 1-2 years Every 1-2 years Every 1-2 years Every 1-2 years Severe Every 6-12 months Every 6-12 months Dilating LV: more frequently Every 1 year Every 6-12 months Dilating LV: more frequently LV, left ventricle; MVA, mitral valve area; Vmax, maximum velocity.* 1 Patient data include age, body surface area, sex, body mass index, current smoker status, history of diabetes mellitus and its treatment, chronic kidney disease (CKD) and hemodialysis, hypertension, infective endocarditis, chronic lung diseases, carotid artery disease, extracardiac vascular disease, history of cerebrovascular accident, consciousness disturbance within 24 h, history of heart valve surgery, previous coronary intervention, myocardial infarction, congestive heart failure New York Heart Association (class 0-II, III, IV), angina pectoris, cardiogenic shock, history of arrhythmia, use of inotropic agents, mitral valve stenosis, aortic valve stenosis, number of diseased vessels in coronary artery , left ventricular function, valve regurgitation sites and the degree or regurgitation, emergency status, concomitant coronary artery bypass grafting, unpredicted coronary artery surgery, surgical methods (e.g., replacement, repair, aortic root replacement), and double or triple valve surgery.* 2 GOLD=Global Initiative for Chronic Obstructive Lung Disease, Stage I=mild (%FEV1 ≥80%), Stage II=moderate (50%≤%FEV1<80%), Stage III=severe (30%≤%FEV1<50%), Stage IV=very severe (%FEV1 <30%).* 3 CKD=chronic kidney disease eGFR categories (mL/min/1.73m 2 ) description and range: G1=normal or high (≥90), G2=mildly decreased (60-89), G3a=mildly to moderately decreased (45-59), G3b=moderately to severely decreased (30-44), G4=severely decreased (15-29), G5=kidney failure (<15), 5D=dialysis.