UG
Uwe Gneveckow
Author with expertise in Focused Ultrasound Technology and Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
2,589
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique

Manfred Johannsen et al.Nov 1, 2005
The aim of this pilot study was to evaluate whether the technique of magnetic fluid hyperthermia can be used for minimally invasive treatment of prostate cancer. This paper presents the first clinical application of interstitial hyperthermia using magnetic nanoparticles in locally recurrent prostate cancer. Treatment planning was carried out using computerized tomography (CT) of the prostate. Based on the individual anatomy of the prostate and the estimated specific absorption rate (SAR) of magnetic fluids in prostatic tissue, the number and position of magnetic fluid depots required for sufficient heat deposition was calculated while rectum and urethra were spared. Nanoparticle suspensions were injected transperineally into the prostate under transrectal ultrasound and flouroscopy guidance. Treatments were delivered in the first magnetic field applicator for use in humans, using an alternating current magnetic field with a frequency of 100 kHz and variable field strength (0–18 kA m−1). Invasive thermometry of the prostate was carried out in the first and last of six weekly hyperthermia sessions of 60 min duration. CT-scans of the prostate were repeated following the first and last hyperthermia treatment to document magnetic nanoparticle distribution and the position of the thermometry probes in the prostate. Nanoparticles were retained in the prostate during the treatment interval of 6 weeks. Using appropriate software (AMIRA), a non-invasive estimation of temperature values in the prostate, based on intra-tumoural distribution of magnetic nanoparticles, can be performed and correlated with invasively measured intra-prostatic temperatures. Using a specially designed cooling device, treatment was well tolerated without anaesthesia. In the first patient treated, maximum and minimum intra-prostatic temperatures measured at a field strength of 4.0–5.0 kA m−1 were 48.5°C and 40.0°C during the 1st treatment and 42.5°C and 39.4°C during the 6th treatment, respectively. These first clinical experiences prompted us to initiate a phase I study to evaluate feasibility, toxicity and quality of life during hyperthermia using magnetic nanoparticles in patients with biopsy-proven local recurrence of prostate cancer following radiotherapy with curative intent. To the authors’ knowledge, this is the first report on clinical application of interstitial hyperthermia using magnetic nanoparticles in the treatment of human cancer.
0

Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution

Manfred Johannsen et al.Nov 20, 2006
To investigate the feasibility of thermotherapy using biocompatible superparamagnetic nanoparticles in patients with locally recurrent prostate cancer and to evaluate an imaging-based approach for noninvasive calculations of the three-dimensional temperature distribution. Ten patients with locally recurrent prostate cancer following primary therapy with curative intent were entered into a prospective phase 1 trial. The magnetic fluid was injected transperineally into the prostates according to a preplan. Patients received six thermal therapies of 60-min duration at weekly intervals using an alternating magnetic field applicator. A method of three-dimensional thermal analysis based on computed tomography (CT) of the prostates was developed and correlated with invasive and intraluminal temperature measurements. The sensitivity of nanoparticle detection by means of CT was investigated in phantoms. The median detection rate of iron oxide nanoparticles in tissue specimens using CT was 89.5% (range: 70–98%). Maximum temperatures up to 55 °C were achieved in the prostates. Median temperatures in 20%, 50%, and 90% of the prostates were 41.1 °C (range: 40.0–47.4 °C), 40.8 °C (range: 39.5–45.4 °C), and 40.1 °C (range: 38.8–43.4 °C), respectively. Median urethral and rectal temperatures were 40.5 °C (range: 38.4–43.6 °C) and 39.8 °C (range: 38.2–43.4 °C). The median thermal dose was 7.8 (range: 3.5–136.4) cumulative equivalent minutes at 43 °C in 90% of the prostates. The heating technique using magnetic nanoparticles was feasible. Hyperthermic to thermoablative temperatures were achieved in the prostates at 25% of the available magnetic field strength, indicating a significant potential for higher temperatures. A noninvasive thermometry method specific for this approach could be developed, which may be used for thermal dosimetry in future studies.
0

Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial

Manfred Johannsen et al.Jan 1, 2007
Purpose: To investigate the treatment-related morbidity and quality of life (QoL) during thermotherapy using superparamagnetic nanoparticles in patients with locally recurrent prostate cancer.Materials and Methods: Ten patients with biopsy-proven locally recurrent prostate cancer following primary therapy with curative intent and no detectable metastases were entered on a prospective phase I trial. Endpoints were feasibility, toxicity and QoL. Following intraprostatic injection of a nanoparticle dispersion, six thermal therapy sessions of 60 min duration were delivered at weekly intervals using an alternating magnetic field. National Cancer Institute (NCI) common toxicity criteria (CTC) and the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and QLQ-PR25 questionnaires were used to evaluate toxicity and QoL, respectively. In addition, prostate specific antigen (PSA) measurements were carried out.Results: Maximum temperatures up to 55°C were achieved in the prostates at 25–30% of the available magnetic field strength. Nanoparticle deposits were detectable in the prostates one year after thermal therapy. At a median follow-up of 17.5 months (3–24), no systemic toxicity was observed. Acute urinary retention occurred in four patients with previous history of urethral stricture. Treatment-related morbidity was moderate and QoL was only temporarily impaired. Prostate-specific antigen (PSA) declines were observed in eight patients.Conclusions: Interstitial heating using magnetic nanoparticles was feasible and well tolerated in patients with locally recurrent prostate cancer. Deposition of nanoparticles in the prostate was highly durable. Further refinement of the technique is necessary to allow application of higher magnetic field strengths.
0
Citation349
0
Save
0

Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles

Frank Landeghem et al.Oct 13, 2008
Patients with glioblastoma multiforme (GBM), the most common primary brain tumor in adults, have still a poor prognosis though new strategies of radio- and chemotherapy have been developed. Recently, our group demonstrated the feasibility, tolerability and anti-tumoral effects of a newly developed therapeutic approach, termed thermotherapy using magnetic nanoparticles or magnetic fluid hyperthermia (MFH), in a murine model of malignant glioma. Currently, the efficacy of MFH is being evaluated in a phase II study. Here, we report on post-mortem neuropathological findings of patients with GBM receiving MFH. In brain autopsies the installed magnetic nanoparticles were dispersed or distributed as aggregates within geographic tumor necroses, restricted in distribution to the sites of instillation. Therefore, our results underscore the need for multiple trajectories of instillation. The typical GBM necrosis with pseudopalisading was free of particles. Dispersed particles and particle aggregates were phagocytosed mainly by macrophages whereas glioblastoma cells showed an uptake to a minor extent. MFH therapy further promotes uptake of nanoparticles in macrophages, likely as a consequence of tumor inherent and therapy induced formation of necrosis with subsequent infiltration and activation of phagocytes. We did not observe bystander effects of MFH such as sarcomatous tumour formation, formation of a sterile abscess or foreign body giant cell reaction. Furthermore, all patients did not present any clinical symptoms related to possible adverse effects of MFH.
0
Citation331
0
Save