AD
Anna Dürr
Author with expertise in Lithium Battery Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
1,236
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery

Pascal Hartmann et al.Jan 1, 2013
This work reports on the cell chemistry of a room temperature sodium–oxygen battery using an electrolyte of diethylene glycol dimethyl ether (diglyme) and sodium trifluoromethanesulfonate (NaSO3CF3, sodium triflate). Different from lithium–oxygen cells, where lithium peroxide is found as the discharge product, sodium superoxide (NaO2) is formed in the present cell, with overpotentials as low as 100 mV during charging. Several analytical methods are used to follow the cell reaction during discharge and charge. Changes in structure and morphology are studied by SEM and XRD. It is found that NaO2 grows as cubic particles with feed sizes in the range of 10–50 μm; upon recharge the particles consecutively decompose. Pressure monitoring during galvanostatic cycling shows that the coulombic efficiency (e−/O2) for discharge and charge is approx. 1.0, the expected value for NaO2 formation. Also optical spectroscopy is identified as a convenient and useful tool to follow the discharge–charge process. The maximum discharge capacity is found to be limited by oxygen transport within the electrolyte soaked carbon fiber cathode and pore blocking near the oxygen interface is observed. Finally electrolyte decomposition and sodium dendrite growth are identified as possible reasons for the limited capacity retention of the cell. The occurrence of undesired side reactions is analyzed by DEMS measurements during cycling as well as by post mortem XPS investigations.
0

Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2

Amrtha Bhide et al.Nov 22, 2013
The present study compares the physico-chemical properties of non-aqueous liquid electrolytes based on NaPF6, NaClO4 and NaCF3SO3 salts in the binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The ionic conductivity of the electrolytes is determined as a function of salt concentration and temperature. It is found that the electrolytes containing NaClO4 and NaPF6 exhibit ionic conductivities ranging from 5 mS cm−1 to 7 mS cm−1 at ambient temperature. The electrochemical stability window of the different electrolytes is studied by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements with respect to a variety of working electrodes (WE) such as glassy carbon (GC), graphite and a carbon gas diffusion layer (GDL). Electrolytes containing NaPF6 and NaClO4 are found to be electrochemically stable with respect to GC and GDL electrodes up to 4.5 V vs. Na/Na+, with some side reactions starting from around 3.0 V for the latter salt. The results further show that aluminium is preferred over different steels as a cathode current collector. Copper is stable up to a potential of 3.5 V vs. Na/Na+. In view of practical Na-ion battery systems, the electrolytes are electrochemically tested with Na0.7CoO2 as a positive electrode. It is inferred that the electrolyte NaPF6–EC : DMC is favorable for the formation of a stable surface film and the reversibility of the above cathode material.