YC
Yanglei Chen
Author with expertise in Conducting Polymer Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting

Mengyao Cao et al.Jun 24, 2024
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical applications. Here, we propose a strategy that combines straightforward chemical modification and electrospinning techniques to construct all-cellulose nanofiber-based TENGs with substantial power output. By using cellulose acetate (CA) as the raw material, the prepared cellulose membranes (CMs) and fluorinated cellulose membranes (FCMs) with different functional groups and hydrophobic properties are applied as the tribopositive and tribonegative friction layers of FCM/CM-based triboelectric nanogenerators (FC-TENGs), respectively. This approach modulates the microstructure and triboelectric polarity of the friction materials in FC-TENGs, thus enhancing their triboelectric charge densities and contact areas. As a result, the assembled FC-TENGs demonstrate enhanced output performance (94 V, 8.5 µA, and 0.15 W/m2) and exceptional durability in 15,000 cycles. The prepared FC-TENGs with efficient energy harvesting capabilities can be implemented in practical applications to power various electronic devices. Our work strengthens the viability of cellulose-based TENGs for sustainable development and provides novel perspectives on the cost-effective and valuable utilization of cellulose in the future.
0

Lightweight insulating oil-well cement filled with hollow glass microspheres and numerical simulation of its unsteady heat transfer process

Hui Wang et al.May 30, 2024
During offshore natural gas extraction, the formation of hydrates in the wellbore poses a crucial issue that affects flow safety. There is a need to find a reliable solution to establish a wellbore with excellent thermal insulation and stability to prevent wellbore blockage. In this study, lightweight and thermally insulated (LWTI) composites with the desired mechanical strength for deep-sea natural gas development were prepared using oil-well cement (OWC) as the matrix and hollow glass microspheres (HGM) as the filler. A two-dimensional (2D) transient heat transfer mathematical model of the HGM/OWC LWTI composites was developed using the COMSOL Multiphysics software and solved using the finite element method. A transient heat transfer analysis of the HGM/OWC LWTI composites was performed. The effective thermal conductivities (keff) of the HGM/OWC LWTI composites were measured, and the values agreed well with the simulation results. The keff of the composites was approximately 0.371 W/(m·K) when the HGM (D51.8) content was 40 vol%. Compared to the traditional OWC (thermal conductivity ~ 0.889 W/(m·K)), the thermal insulation performance of the HGM/OWC LWTI composites was significantly improved. In addition, the density, mechanical properties, and water absorption of the HGM/OWC LWTI composites were investigated. The density of HGM/OWC LWTI composite material has been effectively reduced to a minimum of 1.31 g/cm3, 37% lower than that of pure cementing cement (2.08 g/cm3). The HGM/OWC LWTI composites exhibited good mechanical properties and low water absorption. This research can provide technical support for the efficient development of offshore natural gas.