FR
F. Rubiera
Author with expertise in Carbon Dioxide Capture and Storage Technologies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3,490
h-index:
63
/
i10-index:
164
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Thermal behaviour and kinetics of coal/biomass blends during co-combustion

M.V. Gil et al.Mar 2, 2010
The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5–80 wt.% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200 and 360 °C the volatiles are released and burned, and at 360–490 °C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315–615 °C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats–Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion.
0
Paper
Citation504
0
Save
0

Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture

Claudia Martín et al.Jan 1, 2011
Hypercrosslinked polymers (HCPs) synthesized by copolymerisation of p-dichloroxylene (p-DCX) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) constitute a family of low density porous materials with excellent textural development. Such polymers show microporosity and mesoporosity and exhibit Brunauer–Emmett–Teller (BET) surface areas of up to 1970 m2 g−1. The CO2 adsorption capacity of these polymers was evaluated using a thermogravimetric analyser (atmospheric pressure tests) and a high-pressure magnetic suspension balance (high pressure tests). CO2 capture capacities were related to the textural properties of the HCPs. The performance of these materials to adsorb CO2 at atmospheric pressure was characterized by maximum CO2 uptakes of 1.7 mmol g−1 (7.4 wt%) at 298 K. At higher pressures (30 bar), the polymers show CO2 uptakes of up to 13.4 mmol g−1 (59 wt%), superior to zeolite-based materials (zeolite 13X, zeolite NaX) and commercial activated carbons (BPL, Norit R). In addition, these polymers showed low isosteric heats of CO2 adsorption and good selectivity towards CO2. Hypercrosslinked polymers have potential to be applied as CO2 adsorbents in pre-combustion capture processes where high CO2 partial pressures are involved.