JK
Johannes Krisam
Author with expertise in Regularization and Variable Selection Methods
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
703
h-index:
25
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study

Jakob Kather et al.Jan 24, 2019
Background For virtually every patient with colorectal cancer (CRC), hematoxylin–eosin (HE)–stained tissue slides are available. These images contain quantitative information, which is not routinely used to objectively extract prognostic biomarkers. In the present study, we investigated whether deep convolutional neural networks (CNNs) can extract prognosticators directly from these widely available images. Methods and findings We hand-delineated single-tissue regions in 86 CRC tissue slides, yielding more than 100,000 HE image patches, and used these to train a CNN by transfer learning, reaching a nine-class accuracy of >94% in an independent data set of 7,180 images from 25 CRC patients. With this tool, we performed automated tissue decomposition of representative multitissue HE images from 862 HE slides in 500 stage I–IV CRC patients in the The Cancer Genome Atlas (TCGA) cohort, a large international multicenter collection of CRC tissue. Based on the output neuron activations in the CNN, we calculated a “deep stroma score,” which was an independent prognostic factor for overall survival (OS) in a multivariable Cox proportional hazard model (hazard ratio [HR] with 95% confidence interval [CI]: 1.99 [1.27–3.12], p = 0.0028), while in the same cohort, manual quantification of stromal areas and a gene expression signature of cancer-associated fibroblasts (CAFs) were only prognostic in specific tumor stages. We validated these findings in an independent cohort of 409 stage I–IV CRC patients from the “Darmkrebs: Chancen der Verhütung durch Screening” (DACHS) study who were recruited between 2003 and 2007 in multiple institutions in Germany. Again, the score was an independent prognostic factor for OS (HR 1.63 [1.14–2.33], p = 0.008), CRC-specific OS (HR 2.29 [1.5–3.48], p = 0.0004), and relapse-free survival (RFS; HR 1.92 [1.34–2.76], p = 0.0004). A prospective validation is required before this biomarker can be implemented in clinical workflows. Conclusions In our retrospective study, we show that a CNN can assess the human tumor microenvironment and predict prognosis directly from histopathological images.
0

Understanding an impact of patient enrollment pattern on predictability of central (unstratified) randomization in a multi‐center clinical trial

Johannes Krisam et al.Jun 3, 2024
In a multi‐center randomized controlled trial (RCT) with competitive recruitment, eligible patients are enrolled sequentially by different study centers and are randomized to treatment groups using the chosen randomization method. Given the stochastic nature of the recruitment process, some centers may enroll more patients than others, and in some instances, a center may enroll multiple patients in a row, for example, on a given day. If the study is open‐label, the investigators might be able to make intelligent guesses on upcoming treatment assignments in the randomization sequence, even if the trial is centrally randomized and not stratified by center. In this paper, we use enrollment data inspired by a real multi‐center RCT to quantify the susceptibility of two restricted randomization procedures, the permuted block design and the big stick design, to selection bias under the convergence strategy of Blackwell and Hodges (1957) applied at the center level. We provide simulation evidence that the expected proportion of correct guesses may be greater than 50% (i.e., an increased risk of selection bias) and depends on the chosen randomization method and the number of study patients recruited by a given center that takes consecutive positions on the central allocation schedule. We propose some strategies for ensuring stronger encryption of the randomization sequence to mitigate the risk of selection bias.