AS
Arthur Simen
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,292
h-index:
30
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity

Olimpia Meucci et al.Nov 24, 1998
The HIV-1 envelope protein gp120 induces apoptosis in hippocampal neurons. Because chemokine receptors act as cellular receptors for HIV-1, we examined rat hippocampal neurons for the presence of functional chemokine receptors. Fura-2-based Ca imaging showed that numerous chemokines, including SDF-1α, RANTES, and fractalkine, affect neuronal Ca signaling, suggesting that hippocampal neurons possess a wide variety of chemokine receptors. Chemokines also blocked the frequency of spontaneous glutamatergic excitatory postsynaptic currents recorded from these neurons and reduced voltage-dependent Ca currents in the same neurons. Reverse transcription–PCR demonstrated the expression of CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and CX 3 CR1, as well as the chemokine fractalkine in these neurons. Both fractalkine and macrophage-derived chemokine (MDC) produced a time-dependent activation of extracellular response kinases (ERK)-1/2, whereas no activation of c-JUN NH 2 -terminal protein kinase (JNK)/stress-activated protein kinase, or p38 was evident. Furthermore, these two chemokines, as well as SDF-1α, activated the Ca- and cAMP-dependent transcription factor CREB. Several chemokines were able also to block gp120-induced apoptosis of hippocampal neurons, both in the presence and absence of the glial feeder layer. These data suggest that chemokine receptors may directly mediate gp120 neurotoxicity.
0

A negative regulator of MAP kinase causes depressive behavior

Vanja Đurić et al.Oct 17, 2010
Gene expression changes that occur in the brains of people with depression could lead to the development of new therapies. Now, Ronald Duman and his colleagues report that the phosphatase Mkp-1 is upregulated in the postmortem hippocampus of individuals with depression, and altering the expression of this protein in rats and mice can regulate depressive behaviors and their resistance to stress. The lifetime prevalence (∼16%)1 and the economic burden ($100 billion annually)2,3 associated with major depressive disorder (MDD) make it one of the most common and debilitating neurobiological illnesses. To date, the exact cellular and molecular mechanisms underlying the pathophysiology of MDD have not been identified. Here we use whole-genome expression profiling of postmortem tissue and show significantly increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1, encoded by DUSP1, but hereafter called MKP-1) in the hippocampal subfields of subjects with MDD compared to matched controls. MKP-1, also known as dual-specificity phosphatase-1 (DUSP1), is a member of a family of proteins that dephosphorylate both threonine and tyrosine residues and thereby serves as a key negative regulator of the MAPK cascade4, a major signaling pathway involved in neuronal plasticity, function and survival5,6. We tested the role of altered MKP-1 expression in rat and mouse models of depression and found that increased hippocampal MKP-1 expression, as a result of stress or viral-mediated gene transfer, causes depressive behaviors. Conversely, chronic antidepressant treatment normalizes stress-induced MKP-1 expression and behavior, and mice lacking MKP-1 are resilient to stress. These postmortem and preclinical studies identify MKP-1 as a key factor in MDD pathophysiology and as a new target for therapeutic interventions.
0
Citation386
0
Save
0

Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects

Vanja Đurić et al.Feb 17, 2012
Major depressive disorder (MDD) has been linked to changes in function and activity of the hippocampus, one of the central limbic regions involved in regulation of emotions and mood. The exact cellular and molecular mechanisms underlying hippocampal plasticity in response to stress are yet to be fully characterized. In this study, we examined the genetic profile of micro-dissected subfields of post-mortem hippocampus from subjects diagnosed with MDD and comparison subjects matched for sex, race and age. Gene expression profiles of the dentate gyrus and CA1 were assessed by 48K human HEEBO whole genome microarrays and a subgroup of identified genes was confirmed by real-time polymerase chain reaction (qPCR). Pathway analysis revealed altered expression of several gene families, including cytoskeletal proteins involved in rearrangement of neuronal processes. Based on this and evidence of hippocampal neuronal atrophy in MDD, we focused on the expression of cytoskeletal, synaptic and glutamate receptor genes. Our findings demonstrate significant dysregulation of synaptic function/structure related genes SNAP25, DLG2 (SAP93), and MAP1A, and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor subunit genes GLUR1 and GLUR3. Several of these human target genes were similarly dysregulated in a rat model of chronic unpredictable stress and the effects reversed by antidepressant treatment. Together, these studies provide new evidence that disruption of synaptic and glutamatergic signalling pathways contribute to the pathophysiology underlying MDD and provide interesting targets for novel therapeutic interventions.
0
Citation271
0
Save