ZJ
Zhao Jin
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
1,153
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal–Support Interaction

Wei-Wei Wang et al.Jan 5, 2017
Copper–ceria as one of the very active catalysts for oxidation reactions has been widely investigated in heterogeneous catalysis. In this work, copper oxide (1 wt % Cu loading) deposited on both ceria nanospheres with a {111}/{100}-terminated surface (1CuCe-NS) and with nanorod exposed {110}/{100} faces (1CuCe-NR) have been prepared for the investigation of crystal plane effects on CO oxidation. Various structural characterizations, especially including aberration-corrected scanning transmission electron microscopy (Cs-STEM), X-ray absorption fine structure (XAFS) technique, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), were used to precisely determine the structure and status of the catalysts. It is found that the copper oxides were formed as subnanometer clusters and were uniformly dispersed on the surface of the ceria support. The results from XAFS combined with the temperature-programmed reduction technique (H2-TPR) reveal that more reducible CuOx clusters with only Cu–O coordination structure exclusively dominated in the surface of 1CuCe-NS, while the Cu species in 1CuCe-NR existed in both CuOx clusters and strongly interacting Cu-[Ox]-Ce. In situ DRIFTS results demonstrate that the CeO2-{110} face induced a strongly bound Cu-[Ox]-Ce structure in 1CuCe-NR which was adverse to the formation of reduced Cu(I) active sites, resulting in low reactivity in CO oxidation (rCO = 1.8 × 10–6 molCO gcat–1 s–1 at 118 °C); in contrast, CuOx clusters on the CeO2-{111} face were easily reduced to Cu(I) species when they were subjected to interaction with CO, which greatly enhanced the catalytic reactivity (rCO = 5.7 × 10–6 molCO gcat–1 s–1 at 104 °C). Thus, for copper–ceria catalyst, in comparison with the well-known reactive {110}CeO2 plane, {111}CeO2, the most inert plane, exhibits great superiority to induce more catalytically active sites of CuOx clusters. The difference in strength of the interaction between copper oxides and different exposed faces of ceria is intrinsically relevant to the different redox and catalytic properties.
0

Enhanced Visible-Light Photocatalytic Activity of BiOI/BiOCl Heterojunctions: Key Role of Crystal Facet Combination

Liming Sun et al.May 4, 2015
Two comparable models of BiOI/BiOCl heterojuctions with different interface structures (crystal surface orientation and crystal surface combination), denoted as BiOI(001)/BiOCl(001) and BiOI(001)/BiOCl(010), have been prepared via integrating heterojuncton nanostructure construction with crystal facet engineering. BiOI(001)/BiOCl(010) had a greater degree of lattice mismatch and displayed higher visible-light photocatalytic activity than BiOI(001)/BiOCl(001). In general, the activity of a photocatalyst (ηPC) has a positive correlation with light harvesting (ηLH), charge separation (ηCS), and charge injection (ηCI). On the basis of the experimental results, we considered that the higher ηCI value of BiOI(001)/BiOCl(010) was the main reason for its better visible-light photocatalytic performance. In combination with theoretical calculations, we found that the higher ηCI value of BiOI(001)/BiOCl(010) was the result of a shorter photogenerated electron diffusion distance, assisted by the self-induced internal electric fields of the BiOCl slabs. This indicated that the crystal facet combination is the key to enhancing the photocatalytic activity of BiOI/BiOCl. Our work offers an archetype for the further design of heterojunction photocatalysts with a fine tuning of the interface structures in order to reach optimized charge injection and enhanced photocatalytic activity.
0

Highly Dispersed Copper Oxide Clusters as Active Species in Copper-Ceria Catalyst for Preferential Oxidation of Carbon Monoxide

Wei-Wei Wang et al.Feb 13, 2015
Copper-ceria is one of the very active catalysts for the preferential oxidation of carbon monoxide (CO-PROX) reaction, which is also a typical system in which the complexity of copper chemistry is clearly exhibited. In the present manuscript, copper–ceria catalysts with different Cu contents up to 20 wt % supported on CeO2 nanorods were synthesized by a deposition–precipitation (DP) method. The as-prepared samples were characterized by various structural and textural detections including X-ray diffraction (XRD), Vis-Raman, transmission electron microscopy (TEM), ex situ/in situ X-ray absorption fine structure (XAFS), and temperature-programmed reduction by hydrogen (H2-TPR). It has been confirmed that the highly dispersed copper oxide (CuOx) clusters, as well as the strong interaction of Cu-[Ox]-Ce structure, were the main copper species deposited onto the ceria surface. No separated copper phase was detected for both preoxidized and prereduced samples with the Cu contents up to 10 wt %. The fresh copper–ceria catalysts were pretreated in either O2- or H2-atmosphere and then tested for the CO-PROX reaction at a space velocity (SV) of 60 000 mL·h–1·gcat–1. The prereduced 5 and 10 wt % Cu samples exhibited excellent catalytic performance with high CO conversions (>50%, up to 100%) and O2 selectivities (>60%, up to 100%) within a wide temperature window of 80–140 °C. The in situ XAFS technique was carried out to monitor the structural evolution on the copper–ceria catalysts during the PROX experiments. The X-ray absorption near edge spectra (XANES) profiles, by the aid of linear combination analysis, identified the oxidized Cu(II) were the dominant copper species in both O2- and H2-pretreated samples after CO-PROX at 80 °C. Furthermore, the extended X-ray absorption fine structure (EXAFS) fitting results, together with the corresponding H2-TPR data distinctly determined that the highly dispersed CuOx (x = 0.2−0.5) cluster, other than the Cu–[Ox]–Ce (x = 0.7−3.2) structure, were the crucial active species for the studied CO-PROX reaction.
0

Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match

Liming Sun et al.Dec 12, 2013
Fabricating heterojunction photocatalysts is an important strategy for speeding up the separation rate of photogenerated charge carriers, which is attracting greater interest. However, the choice of three factors, individual materials, band offsets, and effective interfaces, is still important for fabricating efficient heterojunction photocatalysts. Herein, efficient g-C3N4/Zn2GeO4 photocatalysts with effective interfaces were designed by controlling the surface charges of the two individual materials inside the same aqueous dispersion medium, making use of the electrostatic attraction between oppositely charged particles. The g-C3N4/Zn2GeO4 heterojunction with opposite surface charge (OSC) showed higher visible-light photocatalytic activity for degradation of methylene blue than those of pure g-C3N4, pure Zn2GeO4, and the g-C3N4/Zn2GeO4 with identical surface charge (ISC). The investigation of the light absorption spectrum, adsorption ability, and photocurrent responses revealed that the improved separation of photogenerated carriers was the main reason for the enhancement of the OSC g-C3N4/Zn2GeO4 sample's photocatalytic activity. By combining with theoretical calculations, we investigated the microscopic mechanisms of interface interaction and charge transfer between g-C3N4 and Zn2GeO4. The photogenerated electrons in the g-C3N4 N 2p states directly excited into the Zn 4s and Ge 4s hybrid states of Zn2GeO4. The strategy of designing and preparing a g-C3N4/Zn2GeO4 composite catalyst in this work is very useful for fabricating other efficient heterojunction photocatalysts.