In Brief Objective: To evaluate the physiologic importance of the satiety gut hormones. Background: Controversy surrounds the physiologic role of gut hormones in the control of appetite. Bariatric surgery remains the most effective treatment option for obesity, and gut hormones are implicated in the reduction of appetite and weight after Roux-en-Y gastric bypass. Methods: We correlated peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) changes within the first week after gastric bypass with changes in appetite. We also evaluated the gut hormone responses of patients with good or poor weight loss after gastric bypass. Finally, we inhibited the gut hormone responses in gastric bypass patients and then evaluated appetite and food intake. Results: Postprandial PYY and GLP-1 profiles start rising as early as 2 days after gastric bypass (P < 0.05). Changes in appetite are evident within days after gastric bypass surgery (P < 0.05), and unlike other operations, the reduced appetite continues. However, in patients with poor weight loss after gastric bypass associated with increased appetite, the postprandial PYY and GLP-1 responses are attenuated compared with patients with good weight loss (P < 0.05). Inhibiting gut hormone responses, including PYY and GLP-1 after gastric bypass, results in return of appetite and increased food intake (P < 0.05). Conclusion: The attenuated appetite after gastric bypass is associated with elevated PYY and GLP-1 concentrations, and appetite returns when the release of gut hormones is inhibited. The results suggest a role for gut hormones in the mechanism of weight loss after gastric bypass and may have implications for the treatment of obesity. Roux-en-Y gastric bypass is an effective treatment for obesity, and gut hormones have been implicated as causing reduction of appetite and weight. We showed that significant weight loss depends on gut hormone concentrations and that attenuated appetite after gastric bypass is associated with increased gut hormones, and appetite returns when the release of gut hormones is inhibited.