AB
A. Beyersdorf
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
1,933
h-index:
42
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies

Virginie Buchard et al.Jun 15, 2017
The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is NASA’s latest reanalysis for the satellite era (1980 onward) using the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. MERRA-2 provides several improvements over its predecessor (MERRA-1), including aerosol assimilation for the entire period. MERRA-2 assimilates bias-corrected aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer and the Advanced Very High Resolution Radiometer instruments. Additionally, MERRA-2 assimilates (non bias corrected) AOD from the Multiangle Imaging SpectroRadiometer over bright surfaces and AOD from Aerosol Robotic Network sunphotometer stations. This paper, the second of a pair, summarizes the efforts to assess the quality of the MERRA-2 aerosol products. First, MERRA-2 aerosols are evaluated using independent observations. It is shown that the MERRA-2 absorption aerosol optical depth (AAOD) and ultraviolet aerosol index (AI) compare well with Ozone Monitoring Instrument observations. Next, aerosol vertical structure and surface fine particulate matter (PM 2.5 ) are evaluated using available satellite, aircraft, and ground-based observations. While MERRA-2 generally compares well to these observations, the assimilation cannot correct for all deficiencies in the model (e.g., missing emissions). Such deficiencies can explain many of the biases with observations. Finally, a focus is placed on several major aerosol events to illustrate successes and weaknesses of the AOD assimilation: the Mount Pinatubo eruption, a Saharan dust transport episode, the California Rim Fire, and an extreme pollution event over China. The article concludes with a summary that points to best practices for using the MERRA-2 aerosol reanalysis in future studies.
0
Paper
Citation688
0
Save
0

Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications

Natasha DeLeón-Rodriguez et al.Jan 28, 2013
The composition and prevalence of microorganisms in the middle-to-upper troposphere (8–15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth’s surface. Here we report on the microbiome of low- and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-μm diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1–C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.
0
Paper
Citation410
0
Save
0

Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

Richard Moore et al.Mar 1, 2017
Compared to using conventional jet fuel, the use of a biofuel blend reduces aircraft engine particle emissions at cruising altitude by about 50–70 per cent. Aviation affects the climate as a result of aerosol and carbon dioxide emissions from fossil fuels. Biofuels could be a future source of aviation energy that is not dependent on fossilized carbon, but the environmental impact of these fuels, when used by planes in flight, has not yet been investigated. This study presents observational data gathered from directly behind an aircraft flying at cruise altitude and finds that, compared to using purely conventional fuel, a blend of conventional fuel and biofuel reduces aerosol particle emissions by 50 to 70 per cent. The authors also provide several aerosol parameters that will help transportation and climate modellers to assess whether the use of biofuels in aviation is a feasible strategy to mitigate climate change. Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate1. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain1. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation2. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels2,3, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.
0
Paper
Citation314
0
Save
0

Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications

Xiaoxi Liu et al.Jun 14, 2017
Abstract Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC 4 RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM 1 ) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM 1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM 1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM 1 emission estimate (1530 ± 570 Gg yr −1 ) is over 3 times that of the NEI PM 2.5 estimate and is also higher than the PM 2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.
0
Paper
Citation294
0
Save
0

Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid

B. Duncan et al.May 21, 2014
Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.
0
Paper
Citation227
0
Save
0

Fine Particle pH and Sensitivity to NH<sub>3</sub> and HNO<sub>3</sub> over South Korea During KORUS-AQ

Ifayoyinsola Ibikunle et al.Nov 27, 2024
Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43±0.68) and aerosol liquid water content determined were then used to determine the ‘chemical regime’ of the inorganic fraction of particulate matter (PM) sensitivity to ammonia and nitrate availability. We found that the aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels are further promoted because dry deposition velocity is low and allows its accumulation in the boundary layer. Because of this, HNO3 reductions achieved by NOX controls prove to be the most effective approach for all conditions examined, and that NH3 emissions can only partially affect PM reduction for the specific season and region. Despite the benefits of controlling PM formation to reduce ammonium-nitrate aerosol and PM mass, changes in the acidity domain can significantly affect other processes and sources of aerosol toxicity (e.g. solubilization of Fe, Cu and other metals) as well as the deposition patterns of these trace species and reactive nitrogen.